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Search Methodologies

Short description of the project:

In the three decades which passed since 1979 there has been an

explosion of developments in search for instance in Computer

Science, Image Reconstruction, Machine Learning, Information

Theory, and Operation Research.

A search structure is defined by a space of objects searched

for and a space of tests (questions). In specifying a search

problem performance criteria have to be chosen. Furthermore

we distinguish combinatorial and probabilistic models.

=⇒ Search combinatorial problems on Cayley graphs
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Space of objects - Cayley graphs

Let G be a group, and let S ⊂ G be a set of group elements as a set

of generators for a group such that e 6∈ S and S = S−1.

Definition. In the Cayley graph Γ = Cay(G,S) = (V,E) vertices corre-

spond to the elements of the group, i.e. V = G, and edges correspond

to the action of the generators, i.e. E = {(g, gs) : g ∈ G, s ∈ S}.

Properties:

(i) Γ is a connected regular graph of degree |S|;
(ii) Γ is a vertex–transitive graph.

Examples: hypercube graph, pancake network (de Bruijn graph)
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Space of questions - combinatorial problems

Open combinatorial problems on Cayley graphs:

• Diameter problem (Pancake problems);

• Sorting by reversals;

• Hamiltonian problem;

• Vertex reconstruction problem;

Applications:

• computer science (networks);

• molecular biology;

• coding theory;
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Applications in Computer science

SIAM International Conference on Parallel Processing, 1986: it was

suggested to use Cayley graphs as a ”tool to construct vertex–symmetric

interconnection networks.”

Interconnection networks are modeled by graphs: the vertices corre-

spond to processing elements, memory modules, or just switches; the

edges correspond to communication lines.

Advantages in using Cayley graphs as network models:

• vertex–transitivity (the same routing algorithm is used for each v);

• hierarchical structure (allows recursive constructions);

• high fault tolerance (the maximum number of vertices that need to

be removed and still have the graph remain connected);

• small degree and diameter.
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Cayley graphs in computer science

The transposition Cayley graphs:

• transposition networks Symn(T ) on the symmetric group Symn gen-

erated by the transpositions from the set T = {(i, j), 1 ≤ i < j ≤ n};
• star Cayley graphs Symn(ST ) generated by (1, i), 1 < i ≤ n;

• bubble sort Cayley graphs Symn(t) generated by (i, i+1), 1 ≤ i < n,

The pancake Cayley graphs:

• pancake graph Symn(PR) on Symn generated by prefix–reversals on

intervals [1, i], 1 < i ≤ n;

• burnt pancake graph Bn(PRσ) on the hyperoctahedral group Bn =

Z2 o Symn generated by sign–change prefix–reversals on intervals [1, i].

⇒ well–known open combinatorial pancake problem
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Pancake problem

The original pancake problem was posed in 1975 in the American

Mathematical Monthly by Jacob E. Goodman writing under the name

”Harry Dweighter” (or ”Harried Waiter”) and it stated as follows:

”The chef in our place is sloppy, and when he prepares a stack

of pancakes they come out all different sizes. Therefore, when I

deliver them to a customer, on the way to the table I rearrange

them (so that the smallest winds up on top, and so on, down to

the largest on the bottom) by grabbing several pancakes from

the top and flips them over, repeating this (varying the number

I flip) as many times as necessary. If there are n pancakes, what

is the maximum number of flips (as a function of n) that I will

ever have to use to rearrange them?”
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Pancake problem

A stack of n pancakes is represented by a permutation on n elements

and the problem is to find the least number of flips (prefix–reversals)

needed to transform a permutation into the identity permutation.

This number of flips corresponds to the diameter D of the pancake

Cayley graph on the symmetric group generated by prefix–reversals.

Currently, exact values of D are known for n ≤ 17:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
D 1 3 4 5 7 8 9 10 11 13 14 15 16 17 18 19

Asai S., Kounoike Y., Shinano Y. and Kaneko K., Computing the diameter of 17–

pancake graph using a PC cluster, LNCS 4128 (2006) 1114–1124
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Pancake problem: bounds

Bill Gates, Papadimitriou, 1979, for n ≤ 14:

17n/16 ≤ D ≤ (5n+5)/3

Heydari, Sudborough, 1997:

15n/14 ≤ D

Sudborough, etc., 2007:

D ≤ 18n/11

Open problem: What is the diameter of the pancake graph?
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Burnt pancake problem

Gates, Papadimitriou,1979: here one side of each pancakes is burnt,

and the pancakes must be sorted with the burnt side down.

Two–sided pancakes can be represented by a signed permutation on n

elements with some elements negated: −I = [−1,−2, . . . ,−n].

Open problem: What is the diameter of the burnt pancake graph?

Currently, exact values of the diameter D are known for n ≤ 18:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 4 6 8 10 12 14 15 17 18 19 21 22 23 24 26 28 29

Cohen,Blum,1995: 3n/2 ≤ D ≤ 2n− 2 (the upper bound for n ≥ 10)
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The diameter problem

Even, Goldreich, 1981: Computing the diameter of an arbitrary Cayley

graph over a set of generators is NP–hard.

General upper and lower bounds are very difficult ro obtain.

There is a fundamental difference between Cayley graphs of abelian

and non–abelian groups.

Babai, Kantor, Lubotzky, 1989: Every non–abelian finite simple group

G has a set of ≤ 7 generators such that the resulting Cayley graph has

diameter O(log |G|).

This property does not hold for Cayley graphs of abelian groups.
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The diameter problem

Conjecture. (Babai, Kantor, Lubotzky, 1988) There exist a constant

C such that for every non–abelian finite simple group G, the diameter

of every Cayley graph of G is ≤ (log |G|)C.

If the conjecture is true, one would expect to find Cayley graphs of

these groups with small degree and diameter ⇒

⇒ Applications:

• computer science;

• theory of intercommunication networks;
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Other applications of Cayley graphs

Molecular biology: A single chromosome is presented by a permuta-

tion π on the integers 1, . . . , n as well as a signed permutation when a

direction of a gene is important. A genome is presented by a map that

provide the location of genes along a chromosome. To compare two

genomes, we often find that these two genomes contain the same set

of genes. But the order of the genes is different in different genomes.

For example, it was found that both human X chromosome and mouse

X chromosome contain eight 1,2, . . . ,8 genes which are identical.

In human, the genes are ordered as [4,6,1,7,2,3,5,8]

and in mouse, they are ordered as [1,2,3,4,5,6,7,8]

It was also found that a set of genes are in cabbage as [1,−5,4,−3,2]

and in turnip, they are ordered as [1,2,3,4,5].
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Permutations in molecular biology

The comparison of two genomes is significant because it provides us

some insight as to how far away genetically these species are.

One of the ways to compare genomes is to compare the order of

appearance of identical genes in the two species. Palmer(1986) has

shown that the difference in order may be explained by a small number

of reversals: Genome X: (3,1,5,2,4) −→ Genome Y: (3,2,5,1,4)

The evolutionary distance between two genomes is measured by the

reversal distance of two permutations that is the least number d of

reversals needed to transform one permutation into another.

Example. π = [41352] → [41325] → [14325] → [12345] = I

d(π, I) = 3
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Cayley graphs in molecular biology

The reversal Cayley graphs:

• reversal graph Symn(R) on Symn generated by reversals on intervals

[i, j], 1 ≤ i ≤ j ≤ n.

• reversal graph Bn(R) on the hyperoctahedral group Bn = Z2 o Symn

generated by sign–change reversals on intervals [i, j], 1 ≤ i ≤ j ≤ n.

The prefix–reversal Cayley graphs:

• prefix–reversal graph Symn(PR) on Symn generated by reversals on

intervals [1, i], 1 < i ≤ n; (Pancake graph)

• prefix–reversal graph Bn(PR) on the hyperoctahedral group Bn = Z2 o
Symn generated by sign–change reversals on intervals [1, i], 1 < i ≤ n.

=⇒ sorting by reversals
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Sorting permutations by reversals

The problem of sorting permutations by reversals is to find, for a given

permutation π, a minimal sequence d of reversals that transforms π to

the identity permutation I.

Mathematical analysis of the problem was initiated by Sankoff,1990.

• find the reversal distance between two permutations (a linear–time

algorithm, D.Bader,2001);

• find a sequence of reversals which realizes the distance;

– solutions are far from unique (A.Bergeron,2002);

– NP–hard for the unsigned permutations (1.5–approximation

algorithm, D.A.Christie,1998);

– polynomial for the signed permutations (O(n2), H.Kaplan,1999)
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Hamiltonicity

Let Γ = (V,E) be a connected graph where V = {v1, v2, . . . , vn}.
A hamiltonian cycle in Γ is a spanning cycle (v1, v2, . . . , vn, v1).

A hamiltonian path in Γ is a path (v1, v2, . . . , vn).

A graph is hamiltonian if it contains a hamiltonian cycle.

Hamiltonian paths and cycles naturally arise

• in computer science;

• in the study of word–hyperbolic groups and automatic groups;

• in combinatorial designs.

Example: hypercube Hn is hamiltonian (the binary Gray code)

Testing whether a graph is hamiltonian is an NP-complete problem.

17



Hamiltonicity: conjectures

Conjecture (Lovász,1970) Every connected vertex–transitive graph

has a hamiltonian path.

Conjecture (Babai,1996) For some ε > o, there exist infinitely many

connected vertex–transitive graphs (even Cayley graphs) Γ without

cycles of length ≥ (1− ε)|V (Γ)|.

There are only 4 vertex–transitive (not Cayley) graphs which do not

have a hamiltonian cycle, and have a hamiltonian path.

Conjecture Every connected Cayley graph on a finite group has a

hamiltonian cycle.
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Hamiltonicity of Cayley graphs on Symn

Conjecture Every connected Cayley graph on a finite group has a

hamiltonian cycle.

It is true for:

• abelian groups (and hence for circulants) ( Marušič, 1983);

• nonabelian groups of special type;

• dihedral groups, (Alspach,Zhang, 1989)

• symmetric group generated by transpositions, (Liskovets, 1975)

Thus, all transposition Cayley graphs are hamiltonian ⇒

• star networks, bubble–sort networks are hamiltonian;

• pancake networks are hamiltonian.
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Other applications of Cayley graphs

Coding theory: sequences (or any other information) are considered

as a vertex set V of a graph and there is an edge if there exist single

errors of the type under consideration (substitutions, transpositions,

deletions, insertions of symbols) transforming one vertex into another.

There are situations when encoding is absent and any vertex (se-

quence) of the graph can be used for information transmission. In

this case the problem of reconstructing an unknown vertex (sequence)

x ∈ V from the minimal number of vertices (erroneous patterns) in

Br(x) arises (Levenshtein, 1997).

=⇒ Vertex reconstruction problem
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Vertex reconstruction problem

For given r ≥ 1 denote by N(Γ, r) the largest number N such that there

exist a subset A ⊆ V of size N and two vertices x 6= y with A ⊆ Br(x)

and A ⊆ Br(y). Thus any N + 1 distinct vertices are contained in

Br(x) for at most one vertex x, while this statement is wrong for any

N < N(Γ, r).

This means that an unknown vertex of Γ can be reconstructed uniquely

by any subset of N(Γ, r) + 1 or more distinct vertices at distance at

most r from the vertex, if such a subset exists.

Thus, for a given graph Γ and integers r = 1, ..., d(Γ) it is required to

find

N(Γ, r) = max
x,y∈V, x 6=y

|Br(x) ∩Br(y)|
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Intersections in a given graph

Hamming graph Ln(q): is presented by the vertex set given by the

vector space Fn
q , n ≥ 2, q ≥ 2, with edges {x, y} if and only if the

Hamming distance d(x, y) = 1. It is distance–regular, and the Cayley

graph on the additive group Fn
q when we take the generator set S =

{xei : x ∈ (Fq)×, 1 ≤ i ≤ n} where the ei = (0, ...,0,1,0, ...0) are the

standard basis vectors of Fn
q .

Levenshtein, 1997: For any n ≥ 2, q ≥ 2 and r ≥ 1, we have

N(Ln(q), r) = q
r−1∑

i=0

(
n− 1

i

)
(q − 1)i

The Hamming graph L2(q) is the lattice graph. This graph is strongly

regular with parameters v = q2, k = 2(q − 1), λ = q − 2, µ = 2,

N(L2(q),1) = q and N(L2(q),2) = q2.
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Intersections in a given graph

Johnson graph Jn
e : is defined on the subset V = Jn

e ⊆ Fn
2 consisting

of all vectors of Hamming weight e. On Jn
e the Johnson distance is

defined as half the (even) Hamming distance, and two vertices x, y are

joined by an edge if and only if they are at Johnson distance 1 from

each other. It is distance–regular but not Cayley graph.

Levenshtein, 1997: For any n ≥ 2, e ≥ 1 and r ≥ 1,

N(Jn
e , r) = n

r−1∑

i=0

(
e− 1

i

)(
n− e− 1

i

)
1

i+1

The Johnson graph Jn
2 is the triangular graph T (n), e = 2 and n ≥ 4.

This graph is strongly regular with parameters v = n(n−1)
2 , k = 2(n−2),

λ = n− 2, µ = 4; N(T (n),1) = n and N(T (n),2) = n(n−1)
2 .
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Intersections in Cayley graphs

Reversal graph Symn(R): is defined on Symn and generated by the

reversals from the set R = {ri,j ∈ Symn,1 ≤ i < j ≤ n}, |R| =
(
n
2

)
,

where reversals ri,j inverse segments [i, j] of a permutation, i.e.,

[. . . , πi, πi+1, . . . , πj−1, πj, . . .]ri,j = [. . . , πj, πj−1, . . . , πi+1, πi, . . .].

It is not distance–regular graph.

Konstantinova, 2007: N(Symn(R),1) = 3, n ≥ 3

N(Symn(R),2) ≥ 3

2
(n− 2)(n+1), n ≥ 3

A permutation:

• is uniquely reconstructible from 4 its distinct 1-neighbors;

• is reconstructible from 3 its 1-neighbors with p3 → 1 as n → ∞;

• is reconstructible from 2 its 1-neighbors with p2 ∼ 1
3 as n → ∞;
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Intersections in Cayley graphs

The transposition Cayley graph Symn(T ): is defined on Symn and

generated by all transpositions. It is a connected bipartite
(
n
2

)
-regular

graph of order n! and diameter (n− 1). It is not distance–regular and

hence not distance–transitive graph;

Levenshtein, Siemons, 2009:

N(Symn(T ),1) = 3, n ≥ 3

N(Symn(R),2) =
3

2
(n− 2)(n+1), n ≥ 3

A permutation:

• is uniquely reconstructible from 4 its distinct 1-neighbors;
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Intersections in Cayley graphs

The reversal graph Bn(Rσ): is defined on Bn and generated by the

sign–change reversals rσi,j flipping the signs of elements on the segments

[i, j], i.e. [. . . , πi, πi+1, . . . , πj−1, πj, . . .]r
σ
i,j = [. . . , πj, πj−1, . . . , πi+1, πi, . . .].

It is not distance–regular graph.

Konstantinova, 2008: N(Bn(Rσ),1) = 2, n ≥ 2

N(Bn(R
σ),1) ≥ n(n+1), n ≥ 2

A signed permutation:

• is uniquely reconstructible from 3 its distinct 1-neighbors;

• is reconstructible from 2 its 1-neighbors with p2 ∼ 1
3 as n → ∞;
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Open problems

• reconstruction of unsigned and signed permutations distorted by

block-changed errors when two adjacent or nonadjacent parts of

permutations switch places, for example, [123456] → [145236];

• reconstruction of unsigned and signed permutations distorted by

reversal block-changed errors when two adjacent or nonadjacent

parts of permutations switch places and one is reversed,

for example, [123456] → [145326];

• reconstruction of elements of another groups:

- what are the groups?

- what are the generating sets?
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Phylogenetic tree of human
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