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Cayley graphs

Let G be a group, and let S ⊂ G be a set of group elements as a set of

generators for a group suh that e 6∈ S and S = S−1.

De�nition

In the Cayley graph Γ = Cay(G ,S) = (V ,E ) verties orrespond to the

elements of the group, i.e. V = G , and edges orrespond to the ation of

the generators, i.e. E = {(g , gs) : g ∈ G , s ∈ S}.

The de�nition of Cayley graph was introdued by A. Cayley in 1878 to

explain the onept of abstrat groups whih are generated by a set of

generators in Cayley's time.

Properties

(i) Γ is a onneted regular graph of degree |S |;
(ii) Γ is a vertex�transitive graph.
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Some families of Cayley graphs

The omplete graph Kn

is the Cayley graph for the additive group Zn of integers modulo n whose

generating set is the set of all non�zero elements of Zn.

The irulant

is the Cayley graph Cay(Zn,S) where S ⊂ Zn is an arbitrary generating

set. The most prominent example is the yle Cn.

The Panake graph Pn

is the Cayley graph on the symmetri group Symn with generating set

{ri ∈ Symn, 1 6 i < n}, where ri is the operation of reversing the order of

any substring [1, i ], 1 < i 6 n, of a permutation π when multiplied on the

right, i.e., [π1, . . . , πi , πi+1, . . . , πn]ri = [πi , . . . , π1, πi+1, . . . , πn].

Pn is well�known beause of the Panake problem (still open!)
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Problems on Cayley graphs

Classial problems

- lassi�ation; - isomorphism problem;

- enumeration; - diameter problem.

De�nition

The diameter of the Cayley graph Γ = Cay(G ,S) is the maximum, over

g ∈ G , of the length of a shortest expression for g as a produt of

generators: diam Γ = maxg∈Gmink g = s1 · · · sk , si ∈ S .

(Same as graph theoreti diameter.)

Applied problems

- hamiltoniity (in omputer siene);

- Panake problems (burnt and unburnt ases);

- sorting by reversals (in moleular biology);

- vertex reonstrution problem (in oding theory).
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Panake problem: 1975, American Mathematical Monthly

by Jacob E . Goodman (under the name "Harried Waiter")

"The hef in our plae is sloppy, and when he prepares a stak of

panakes they ome out all di�erent sizes. Therefore, when I

deliver them to a ustomer, on the way to the table I rearrange

them (so that the smallest winds up on top, and so on, down to

the largest on the bottom) by grabbing several panakes from the

top and �ips them over, repeating this (varying the number I �ip)

as many times as neessary. If there are n panakes, what is the

maximum number of �ips (as a funtion of n) that I will ever

have to use to rearrange them?"
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The Panake problem and the Panake graph

A stak of n panakes is represented by a permutation on n elements and

the problem is to �nd the least number of �ips (pre�x�reversals) needed to

transform a permutation into the identity permutation.

This number of �ips orresponds to the diameter D of the Panake graph

The table of diameters for Pn, 4 6 n 6 19, is presented below:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22

Panake problem: bounds

1979, Gates,Papadimitriou: 17n/16 6 D 6 (5n + 5)/3
1997, Heydari ,Sudborough: 15n/14 6 D

2007, Sudborough, etc .: D 6 18n/11
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Appliations: moleular biology

Genomes are presented by a permutations:

Ala Arg Asp Asn
1 2 3

AlaArgAsp Asn

r3

4

43 2 1

The evolutionary distane: Palmer, Herbon, 1986

The pre�x�reversal distane of two permutations is the least number d of

pre�x�reversals needed to transform one permutation into another:

X : (1, 5, 2, 3, 4) −→ Y : (2, 5, 1, 3, 4)

Sorting permutations by reversal (pre�x�reversals): NP�hard

Find, for a given permutation π, a minimal sequene d of reversals

(pre�x�reversals) that transforms π to the identity permutation I .
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Appliations: interonnetion networks

1986, SIAM International Conferene on Parallel Proessing: "to use Cayley

graphs as a tool to onstrut vertex�symmetri interonnetion networks."

Interonnetion networks are modeled by graphs: the verties orrespond to

proessing elements, memory modules, or just swithes; the edges

orrespond to ommuniation lines.

Advantages in using Cayley graphs as network models:

• vertex�transitivity (the same routing algorithm is used for eah v);

• hierarhial struture (allows reursive onstrutions);

• high fault tolerane (the maximum number of verties that need to be

removed and still have the graph remain onneted);

• small degree and diameter.

Panake graphs ≡ Panake networks ( 1,900,000 results in Google)
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Computing the diameter is di�ult

NP�hard for elementary abelian 2�groups (Even, Goldreih 1981)

De�nition (informal)

A deision problem is in the omplexity lass NP if the yes answer an be

heked in polynomial time.

De�nition (informal)

A deision problem is NP�omplete if it is in NP and all problems in NP

an be redues to it in polynomial time.

De�nition (informal)

A deision problem is NP�hard if all problems in NP an be redues to it in

polynomial time.
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How large an be the diameter?

The diameter an be very small:

diam Γ(G ,G ) = 1.

The diameter also an be very big:

G = 〈x〉 ∼= Zn, diam Γ(G , x) = ⌊n
2
⌋.

In general, G with large abelian fator group may have Cayley graphs with

diameter proportional to |G|.
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(3× 3× 3)�Rubik's ube)

It has 6 faes and |Rubik | = 43, 252, 003, 274, 489, 856, 000 positions.

If G = Rubik is a group of all positions, and S is de�ned by rotation s.t.

Rubik := 〈S〉 then the diameter d(3× 3× 3) for Cay(G ,S) is the best

solution for the worst position.

1981, Morwen Thistlethwaite: 18 ≤ d(3× 3× 3) ≤ 52.
1995, Michael Reid : 20 ≤ d(3× 3× 3) ≤ 29.
2010, Tomas Rokicki , etc .: diam(3× 3× 3) = 20.

Every position of Rubik's Cube an be solved in twenty moves or less.
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The diameter problem: non�abelian ase

Computing the diameter of an arbitrary Cayley graph over a set of

generators is NP�hard. General upper and lower bounds are very di�ult ro

obtain. Moreover, there is a fundamental di�erene between Cayley graphs

of abelian and non�abelian groups.

Babai, Kantor, Lubotzky, 1989

Every non�abelian �nite simple group G has a set of ≤ 7 generators suh

that the resulting Cayley graph has diameter O(log |G |).

So, they have shown that eah non�abelian simple group has a set of at

most seven generators that yields a Cayley graph with logarithmi diameter

(with onstant fators).

However, this property does not hold for Cayley graphs of abelian groups.
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The diameter problem: abelian ase

Annexstein, Baumslag, 1993

Let G be an abelian group with a generating set S of size r . The Cayley

graph Cay(G , S) has the following diameter bound:

diam(Cay(G , S)) >
1

e
|G |1/r .
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The diameter problem: non�abelian ase again

On the other hand, in 1988 it was onjetured by Laszlo Babai and Akos

Seress for non�abelian groups that the diameter will always be small.

Conjeture: Babai, Seress, 1988

There exist a onstant c suh that for every non�abelian �nite simple

group G , the diameter of every Cayley graph of G is 6 (log |G |)c .

It was reformulated for the diameter of groups.

De�nition

The diameter of a group is diam(G ) := maxS diam Γ(G ,S).

Conjeture: Babai, Seress, 1992

There exist a onstant c suh that for every non�abelian �nite simple

group G its diameter is diam(G ) = O(logc |G |).
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The diameter of groups

De�nition

The diameter of a group is diam(G ) := maxS diam Γ(G ,S).

Conjeture: Babai, Seress, 1992

There exist a onstant c suh that for every non�abelian �nite simple

group G its diameter is diam(G ) = O(log c |G |).

Conjeture is true for:

• the projetive speial linear group PSL(2, p), PSL(3, p)
(Helfgott, 2008, 2010);

• Lie�type groups of bounded rank

(Pyber, Szabo, 2011, and Breuillard, Green, Tao, 2011).

Alternating groups???
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The diameter of the symmetri group

As it was onjetured, the diameter of the symmetri group of degree n is

polynomially bounded in n.

The best known upper bound was exponential in

√
n log n, namely

Babai, Seress, 1988

If G is either Symn or An then the diameter

diam(G ) 6 exp((1 + o(1))
√
n log n) = exp((1 + o(1))

√

log |G |).

We write exp(x) = ex .
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On the diameter of permutation groups

Reently it was obtained a quasipolynomial upper bound.

De�nition

A funtion f (n) is alled quasipolynomial if log(f (n)) is a polynomial

funtion on log n.

Helfgott, Seress, 2011

If G is either Symn or An then the diameter

diam(G ) 6 exp(O((log n)4 log log n)) = exp((log log |G |)O(1).

We write exp(x) = ex .

The proof is di�ult!
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Proof tehniques in Helfgott, Seress, 2011

1. Subset versions of theorems of Babai, Pyber about 2�transitive groups

and Bohert, Liebek about large ardinality subgroups of An.

2. ombinatorial arguments, using random walks of quasipolynomial length

on various domains to generate permutations that approximate properties

of truly random elements of An.

3. Previous results on diam(An): Babai, Seress, 1988; Babai, Seress, 1992;
Babai, Beals, Seress, 2004.

5. Seress: "Arguments are mostly ombinatorial: the full symmetri group is

a ombinatorial rather than a group theoreti objet."
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