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Outline of talks

The main goal

To present algebraic and combinatorial methods in integral graph theory.

Content

� Short historical background
� Classes of graphs:

- cubic integral graphs (a classi�cation is completed)

- quartic integral graphs (a classi�cation is not completed)

- integral Cayley graphs

� Algebraic methods:

- classical spectral methods

- dual and generalized dual Seidel switching

� Combinatorial methods:

- representation theory of �nite groups

- Young tableaux, Hook formula

� Applications
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Historical background: 1974

Integral graph

A graph Γ is integral if its spectrum consists entirely of integers, where the

spectrum of Γ is the spectrum of its adjacency matrix.

F. Harary and A. J. Schwenk, Which graphs have integral
spectra? Graphs and Combinatorics (1974).

The problem of characterizing integral graphs.

O. Ahmadi, N. Alon, I. F. Blake, and I. E. Shparlinski,
Graphs with integral spectrum, (2009)

Most graphs have nonintegral eigenvalues, more precisely, it was proved

that the probability of a labeled graph on n vertices to be integral is at

most 2−n/400 for a su�ciently large n.

Remark. We believe our bound is far from being tight and the number of

integral graphs is substantially smaller.
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Computational results on graphs: 1999-2004

K. Bali�nska, D. Cvetkovi�c, M. Lepovi�c, S. Simi�c,
D. Stevanovi�c, M. Kupczyk, K.T. Zwierzy�nski, G. Royle

- Brendan McKay's program GENG for generating graphs

- Magma

Connected intergal graphs with n 6 12 vertices

n 2 3 4 5 6 7 8 9 10 11 12

total 2 23 26 210 215 2097152 228 236 245 250 266

# 1 1 2 3 6 7 22 24 83 236 325

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 4 / 34



Simplest examples

Spectrum of the complete graph Kn

[(−1)n−1, (n − 1)1] for n > 2, and [01] for n = 1. Integral for any n > 1.

Spectrum of the complete bipartite graph Km,n

[0n+m−2,±(
√
nm)1] for n,m > 1. Integral when mn = c2.

Spectrum of n-cycle Cn

The spectrum consists of the numbers 2 cos(2πin ), i = 1, . . . , n with

multiplicities 2, 1, 1, . . . , 1, 2 for n even and 1, 1, . . . , 1, 2 for n odd.

There are only three integral cycles:

C3: [−12, 2] (C3
∼= K3)

C4: [−2, 02, 2] = [02,±2] (C4
∼= K2,2)

C6: [−2,−12, 12, 2] = [±12,±2]

Smallest non-integral cycle is C5: [2, (−1+
√
5

5 )2, (−1−
√
5

5 )2]
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Classi�cation of integral cubic graphs: 1975-1978

D. Cvetkovi�c (1975)

The set of all connected regular integral graphs of a �xed degree is �nite.

F. C. Bussemaker, D. Cvetkovi�c (1976);A.J.Schwenk (1978)

There are exactly 13 connected, cubic, integral graphs.
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Classi�cation of integral quartic graphs: 1998-??

Known results

• 1888 possible spectra of 4-regular bipartite integral graphs

(D. Cvetkovi�c, S. Simi�c, D. Stevanovi�c, 1998)

• 828 feasible spectra of connected 4-regular bipartite integral graphs

(D. Stevanovi�c, N. M. de Abreu, M. A. de Freitas, R. Del-Vecchio, 2007)
• 8 6 n 6 560 bounds for the number of vertices (SAFDL, 2007)
• exhaustive lists of:

- 32 connected 4-regular integral Cayley graphs;

- 27 connected 4-regular integral arc-transitive graphs;

(M. Minchenko, I. M. Wanless, 2015)

17 quartic bipartite Cayley graphs

n 8 10 12 16 18 24 30 32 36 40 48 72 120

# 1 1 2 1 1 3 1 1 1 1 1 2 1

users.monash.edu.au/~iwanless/data/graphs/IntegralGraphs

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 7 / 34
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How to get not vertex-transitive integral graphs?

Known facts

Let λi , i = 1, . . . , n, and µj , j = 1, . . . ,m, are eigenvalues of G and H.

Then:

• the product G × H has eigenvalues λiµj ;
• the sum G + H has eigenvalues λi + µj ;
• the strong sum G ⊕ H has eigenvalues λiµj + λi + µj ;

Thus, these three operations preserve the integrality.

Question

Are there any other graph operations preserving the integrality?

Answer

YES: dual Siedel switching!
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Which Cayley graphs are integral?: 2009

Cayley graph

Let G be a group, and let S ⊂ G be a set of group elements as a set of

generators for a group such that e 6∈ S and S = S−1. In the Cayley graph

Γ = Cay(G , S) = (V ,E ) vertices correspond to the elements of the group,

i.e. V = G , and edges correspond to the action of the generators, i.e.

E = {{g , gs} : g ∈ G , s ∈ S}.

Properties

By the de�nition,

(i) Γ is undirected with no loops;

(ii) Γ is a connected regular graph of degree |S |;
(iii) Γ is a vertex�transitive graph.

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 9 / 34
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Classi�cation of integral Cayley graphs

A. Abdollahi, E. Vatandoost, 2009

There are exactly 7 seven connected cubic integral Cayley graphs.

Characterization of integral Cayley graphs

Cayley graphs over abelian groups (W. Klotz, T. Sander, 2010)
(determine all abelian Cayley integral groups)

Integral Cayley graphs and groups (A. Ahmady, J. P. Bell, B. Mohar,

2014) (determine all Cayley integral groups)

Cayley graphs over dihedral groups (L. Lu, Q. Huang, X. Huang, 2018)
(determine all integral Cayley graphs over Dp for a prime p)

De�nition

A group G is a Cayley integral group if for every symmetric subset S of G ,

Γ = Cay(G ,S) is an integral graph.
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Cayley graphs over dihedral groups (L. Lu, Q. Huang, X. Huang, 2018)
(determine all integral Cayley graphs over Dp for a prime p)

De�nition

A group G is a Cayley integral group if for every symmetric subset S of G ,

Γ = Cay(G , S) is an integral graph.
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Integral Cayley graphs over Symn

The Star graph Sn = Cay(Symn,T ), n > 2

is the Cayley graph over the symmetric group Symn with the generating set

T = {(1 i), 2 6 i 6 n}.

Properties of the Star graph

connected bipartite (n − 1)�regular graph of order n! and diameter

diam(Sn) = b3(n−1)2 c (S. B. Akers, B. Krishnamurthy (1989))

vertex-transitive and edge-transitive

contains hamiltonian cycles (V. Kompel'makher, V. Liskovets, 1975,
P. Slater 1978)

it does contain even `�cycles where ` = 6, 8, . . . , n!

has hierarchical structure

has integral spectrum
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Integral Cayley graphs: the Star graphs Sn

Conjecture (A. Abdollahi and E. Vatandoost, 2009)

The spectrum of Sn is integral, and contains all integers in the range from

−(n− 1) up to n− 1 (with the sole exception that when n 6 3, zero is not

an eigenvalue of Sn).

For n 6 6, the conjecture was veri�ed by GAP.

Theorem (G. Chapuy and V. Feray, 2012)

The spectrum of Sn contains only integers.

Question

How to get not vertex-transitive 4-regular integral graphs?

Answer

YES: dual Siedel switching!
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W. Haemers (1984): Dual Seidel switching

Dual Seidel switching

For any simple graph Γ with adjacency matrix A(Γ) and an order 2
automorphism ϕ of Γ interchanging only non-adjacent vertices, we have

PA(Γ)PT = A(Γ),

where P is the permutation matrix corresponding to the automorphism ϕ,
and PA(Γ) is a symmetric (0, 1)-matrix with zero diagonal and thus can be

viewed as an adjacency matrix of some simple graph.

The resulting graph is

said to be obtained from Γ by dual Seidel switching induced by ϕ.

Important remark

Note further that (PA(Γ))2 = (A(Γ))2. In particular, if Γ is integral, then a

graph obtained from Γ by the dual Seidel switching is integral as well.
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Dual Siedel switching → the Star graphs

Important remark

If Γ is integral ⇒ a graph obtained from Γ by the dual Siedel swithing

induced by an order 2 automorphism of Γ is integral as well.

Our goal is to �nd an appropriate an order 2 automorphism of the Star

graph Sn. The automorphism group of Sn is Aut(Sn) ∼= SymnSymn−1, i.e.
|Aut(Sn)| = n!(n − 1)!.

De�nitions

Let n be a positive integer, n > 3. Consider the symmetric group

G = Symn and put S = {(1 i) | i ∈ {2, . . . , n}}. The left Star graph (resp.

right Star graph) is the Cayley graph CayL(Symn, S) with left (right)

multiplication (resp. CayR(Symn,S)).
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Properties of the left (right) Star graphs

Lemma

Let LG = {ϕ`π | π ∈ G},RG = {ϕr
π | π ∈ G} be the groups of left and

right shifts G , respectively. The following statements hold:

(1) LG is a group of automorphisms of CayL(G ,S);
(2) RG is a group of automorphisms of CayR(G , S);

Theorem

If π`, πr ∈ Symn satis�es

(1) π`, πr are of order 2;
(2) π`, πr have di�erent parity;

(3) πrSπ
−1
r = S ;

(4) π` is not conjugate to any element in πrS ,

then ϕπ`,πr : x → π` x πr is an order 2 automorphism of CayL(Symn, S)
interchanging only non-adjacent vertices from di�erent parts in bipartition

of the left Star graph CayL(Symn,S), where x ∈ Symn.
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Integral Star graphs and dual Seidel switching

Corollary

For a positive integer n > 5, ϕ(2 4),(2 3)(4 5) is an order 2 automorphism of

the left Star graph CayL(Symn,S) interchanging only non-adjacent vertices.

A new 4-regular graph

From the Star graph S5 with the spectrum:

[030, (±1)4, (±2)28, (±3)12, (±4)1]

by Corollary we have a new 4-regular not vertex-transitive graph with

spectrum

[−37,−213,−13, 015, 11, 215, 35, 41]

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 16 / 34



Integral Star graphs and dual Seidel switching

Corollary

For a positive integer n > 5, ϕ(2 4),(2 3)(4 5) is an order 2 automorphism of

the left Star graph CayL(Symn,S) interchanging only non-adjacent vertices.

A new 4-regular graph

From the Star graph S5 with the spectrum:

[030, (±1)4, (±2)28, (±3)12, (±4)1]

by Corollary we have a new 4-regular not vertex-transitive graph with

spectrum

[−37,−213,−13, 015, 11, 215, 35, 41]

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 16 / 34



Integral Odd graphs and dual Seidel switching

De�nition

For a positive integer m, the Odd graph, denoted by Om+1, is the graph

whose vertex set is the set of m-subsets of a (2m + 1)-set X , where two

m-sets are adjacent if and only if they are disjoint.

The Odd graphs are among a more general family of Johnson graphs.

The Odd graphs are not Cayley graphs.

A new 4-regular graph

In the case m = 3, we have two new not vertex-transitive 4-regular not
vertex-transitive graphs with spectra

{(−3)5, (−2)4, (−1)9, 15, 210, 31, 41}

and

{(−3)4, (−2)6, (−1)8, 16, 28, 32, 41}.
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Integral graphs and dual Seidel switching

S. Goryainov, E. V. Konstantinova, H. Li, D. Zhao, 2020

Integral graphs obtained by dual Seidel switching, Linear Algebra and its

Applications, 604 (2020) 476-489.

https://doi.org/10.1016/j.laa.2020.07.010

Result

In this paper we apply the dual Seidel switching to the Star graphs and to

the Odd graphs, which gives two in�nite families of integral graphs. In

particular, we obtain three new 4-regular integral connected graphs.

Question

Are there other switchings preserving the integrality?
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Dual Seidel switching and Deza graphs

Erickson-Fernando-Haemers-Hardy-Hemmeter-1999

The dual Seidel switching was used for constructing (strictly) Deza graphs

from strongly regular graphs.

Deza graphs, 1994

A Deza graph G with parameters (n, k , b, a) is a k-regular connected graph

of order n for which the number of common neighbours of two distinct

vertices takes just two values, b or a, where b > a.

Deza graphs in terms of matrices

Suppose G is a graph with n vertices, and M is its adjacency matrix. Then

G is a Deza graph with parameters (n, k , b, a) if and only if

M2 = a A + b B + k I

for some symmetric (0, 1)-matrices A, B such that A + B + I = J.
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Dual Seidel switching and Deza graphs

We call an involutive automorphism of a graph as a Seidel automorphism if

it interchanges only non-adjacent vertices.

Erickson-Fernando-Haemers-Hardy-Hemmeter-1999

Theorem

Let G be a strongly regular graph with parameters (n, k , λ, µ), where
k 6= µ, λ 6= µ. Let M be the adjacency matrix of G , and P be a

non-identity permutation matrix of the same size. Then PM is the

adjacency matrix of a Deza graph H if and only if P represents a Seidel

automorphism. Moreover, H is a strictly Deza graph if and only if λ 6= 0,
µ 6= 0.

Question

Are there other ways to get Deza graphs with s.r.g. GA and GB (graphs

de�ned by the matrices A and B)?
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Generalized dual Seidel switching I

Theorem (Kabanov-K-Shalaginov-2020+)

Let G be a s.r.g. with the adjacency matrix M, and H be its induced

subgraph with the adjacency matrix M11. If there exists a Seidel

automorphism of H with the permutation matrix P11 such that

P11M12M22 = M12M22, then matrices

N1 =

(
P11M11 M12

M21 M22

)
, and N2 =

(
P11M11 P11M12

M21P11 M22

)
are the adjacency matrices of Deza graphs with strongly regular children.

Moreover, N2
2 = M2 and N2

1 = (PMP)2.

Simple example

Let G ∼= T (7). If take H = L2(3) with the diagonal symmetry, then there is

a Deza graph with parameters (21, 10, 5, 4) whose spectrum is

[101, 34, 23,−211,−32].
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Generalised dual Seidel switching II

Theorem (Kabanov-K-Shalaginov-2020+)

Let G be a Deza graph with strongly regular children and the adjacency

matrix M, and H be its induced subgraph with the adjacency matrix M11.

If there exists a Seidel automorphism of H with the permutation matrix P11

such that P11M11M12 = M11M12, then matrices

N1 =

(
P11M11 M12

M21 M22

)
, and N2 =

(
P11M11 P11M12

M21P11 M22

)
are the adjacency matrices of Deza graphs with strongly regular children.

Moreover, N2
1 = M2 and N2

2 = (PMP)2.

More complicated example

Let G = L2(m) and H = K2 × Km, then there is a Seidel automorphism of

H corresponding to the central symmetry of the lattice with two rows and

m columns, and for m > 6 there are sought integral Deza graphs.
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Let G be a Deza graph with strongly regular children and the adjacency

matrix M, and H be its induced subgraph with the adjacency matrix M11.

If there exists a Seidel automorphism of H with the permutation matrix P11

such that P11M11M12 = M11M12, then matrices

N1 =

(
P11M11 M12

M21 M22

)
, and N2 =

(
P11M11 P11M12

M21P11 M22

)
are the adjacency matrices of Deza graphs with strongly regular children.

Moreover, N2
1 = M2 and N2

2 = (PMP)2.

More complicated example

Let G = L2(m) and H = K2 × Km, then there is a Seidel automorphism of

H corresponding to the central symmetry of the lattice with two rows and

m columns, and for m > 6 there are sought integral Deza graphs.
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Singular strongly Deza graph

A Deza graph with strongly regular children is called a strongly Deza graph.

A graph is said to be singular if and only if zero is its eigenvalue.

Theorem (Kabanov-K-Shalaginov-2020+)

Any singular strongly Deza graph is an integral graph with four distinct

eigenvalues.

Examples

Deza graph with parameters (12, 6, 3, 2) and spectrum

[61, 23, 02, (−2)6]

Deza graph with parameters (8, 4, 2, 0) and spectrum

[41, 21, 03, (−2)3]

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 23 / 34



Singular strongly Deza graph

A Deza graph with strongly regular children is called a strongly Deza graph.

A graph is said to be singular if and only if zero is its eigenvalue.

Theorem (Kabanov-K-Shalaginov-2020+)

Any singular strongly Deza graph is an integral graph with four distinct

eigenvalues.

Examples

Deza graph with parameters (12, 6, 3, 2) and spectrum

[61, 23, 02, (−2)6]

Deza graph with parameters (8, 4, 2, 0) and spectrum

[41, 21, 03, (−2)3]

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 23 / 34



Singular strongly Deza graph

A Deza graph with strongly regular children is called a strongly Deza graph.

A graph is said to be singular if and only if zero is its eigenvalue.

Theorem (Kabanov-K-Shalaginov-2020+)

Any singular strongly Deza graph is an integral graph with four distinct

eigenvalues.

Examples

Deza graph with parameters (12, 6, 3, 2) and spectrum

[61, 23, 02, (−2)6]

Deza graph with parameters (8, 4, 2, 0) and spectrum

[41, 21, 03, (−2)3]

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 23 / 34



Singular strongly Deza graph

A Deza graph with strongly regular children is called a strongly Deza graph.

A graph is said to be singular if and only if zero is its eigenvalue.

Theorem (Kabanov-K-Shalaginov-2020+)

Any singular strongly Deza graph is an integral graph with four distinct

eigenvalues.

Examples

Deza graph with parameters (12, 6, 3, 2) and spectrum

[61, 23, 02, (−2)6]

Deza graph with parameters (8, 4, 2, 0) and spectrum

[41, 21, 03, (−2)3]

Elena Konstantinova Algebraic and combinatorial approaches 18-11-2020-Novosibirsk 23 / 34



Integral Cayley graphs over Symn

Theorem (G. Chapuy and V. Feray, 2012)

The spectrum of the Star graph contains only integers.

Question

Are there other integral Cayley graphs over the symmetric group generated

by n − 1 transpositions?

Theorem (J. Friedman, 2002)

Among all sets of n− 1 transpositions which generate the symmetric group,

the set whose associated Cayley graph has the highest λ2 (the second

smallest non-negative eigenvalue) is the set T = {(1 i), 2 6 i 6 n}.

Corollary

There are no other integral Cayley graphs over the symmetric group

generated by sets of n − 1 transpositions.
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Multiplicities of eigenvalues of the Star graphs

Theorem (G. Chapuy and V. Feray, 2012)

The multiplicity mul(n − k), 1 6 k 6 n − 1, of (n − k) ∈ Z is given by:

mul(n − k) =
∑
λ`n

dim(Vλ)Iλ(n − k),

where dim(Vλ) is the dimension of an irreducible module, Iλ(n − k) is the

number of standard Young tableaux of shape λ, satisfying c(n) = n − k .

Theorem (S. Avgustinovich, E. Khomyakova, E. K., 2016)

mul(n − 2) = (n − 1)(n − 2)

mul(n − 3) = (n−3)(n−1)
2 (n2 − 4n + 2)

mul(n − 4) = (n−2)(n−1)
6 (n4 − 12n3 + 47n2 − 62n + 12)

mul(n− 5) = (n−2)(n−1)
24 (n6− 21n5 + 169n4− 647n3 + 1174n2− 820n+ 60)
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Multiplicities of eigenvalues of the Star graphs

Theorem (E. Khomyakova, 2018)

Let n, k ∈ Z, n > 2 and 1 6 k 6 n+1
2 , then the multiplicity mul(n − k) of

the eigenvalue (n − k) of the Star graph Sn is given by the following

formula:

mul(n − k) =
n2(k−1)

(k − 1)!
+ P(n),

where P(n) is a polynomial of degree 2k − 3.

Catalogue of the Star graph eigenvalue multiplicities
(E. Khomyakova, E. Konstantinova, 2019)

Multiplicities mul(n − k) of eigenvalues (n − k) of the Star graphs Sn for

n 6 50 and 1 6 k 6 n are presented in the catalogue. Negative eigenvalues

−(n − k) have the same multiplicities as the corresponding positive ones.
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n mul(0)

4 4

5 30

6 168

7 840

8 3960

9 19782

10 150640

11 2089296

12 36011160

13 615154540

14 10058919024

15 158755300080

16 2446623357360

17 37180388161350

18 562723553743200

19 8609968637492640

20 136834037294232600

21 2362305285068081220

22 46683647119188380400

23 1082317991939766615600

24 28669402102376707998480

25 823584631109652810179100

26 24578829823846668615337248

27 743733951896301345083311200

28 22568733857215201388456978800

29 684105464925952548262639920792

30 20701299716741211670774931545440

31 625958194880868894188181599865184

32 18949465923058995214536710200103520

33 575980847734584669407163785428098630

34 17653913968491423747128277755728026816

35 549111783334822055069672069343534784320

36 17491999111109570402967603641903677265688

37 577604136455033790108324856288059877300180

38 20045214161520719656501343733468647442343920

39 739952909795026470270714737199811323856785072

40 29222192669334526110964999773556310398591228240

41 1230755917765824096949390167464313250363248267060

42 54702435049128670258626361893397282522722821124000

43 2531180638482250397635439910040738080021778965170400

44 120404540036518230989551268934056697886796380722098640

45 5830994520024240512182674246166203184664150596748260200

46 285587999460245245945506758907246013961410338139891771680

47 14087557866064153242858310529196022374457008834526880685600

48 698233161880802136904523173665083589953534868653745159722400

49 34731341207704459607094131312251492828402668161403430943758620

50 1733139483848699201861708583736015380726259651081186948733294400
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n mul(0)
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n mul(0)

38 20045214161520719656501343733468647442343920

39 739952909795026470270714737199811323856785072

40 29222192669334526110964999773556310398591228240

41 1230755917765824096949390167464313250363248267060

42 54702435049128670258626361893397282522722821124000

43 2531180638482250397635439910040738080021778965170400

44 120404540036518230989551268934056697886796380722098640

45 5830994520024240512182674246166203184664150596748260200

46 285587999460245245945506758907246013961410338139891771680

47 14087557866064153242858310529196022374457008834526880685600

48 698233161880802136904523173665083589953534868653745159722400

49 34731341207704459607094131312251492828402668161403430943758620

50 1733139483848699201861708583736015380726259651081186948733294400
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Combinatorial methods for getting multiplicities

The representation theory of the symmetric group Symn

Conjugacy classes of Symn are labeled by partitions of n, and the set of

inequivalent irreducible representations is de�ned by partitions of n.

The Hook Formula, 1954

dim(Vλ) =
n!∏

(i ,j)∈[λ]

hij
,

where Vλ a vector space of the irreducible representation associated with

the partition λ ` n.

B. Sagan, 2001 ∑
λ`n

(dim(Vλ))2 = |Symn|
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Integral Cayley graphs over Symn

Question

Are there any other integral Cayley graphs over Symn by transpositions?

Theorem (E. Konstantinova, D. Lytkina, 2020)

Let G = Symn be the symmetric group of degree n > 2 and S be the set

of all transpositions of G . Then the graph Tn = Cay(G ,S) is integral.

K. Kalpakis, Y. Yesha, (1997)
On the Bisection Width of the Transposition Network

Let n > 2 be an integer. Then Tn is an integral Cayley graph:

- the largest eigenvalue of Tn is n(n − 1)/2 with multiplicity 1;
- the second largest eigenvalue of Tn is n(n − 3)/2 with multiplicity

(n − 1)2;
- n(n − 2k + 1)/2 is an eigenvalue of Tn with multiplicity at least

n!/(n(n − k)!(k − 1)!) for 1 6 k 6 n.
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Application: The bisection width problem

M. Garey, D. Johnson, (1979)

The problem of determining the bisection width of a graph is NP-hard.

F. Leighton, (1992)

Finding the bisection width of the transposition network is an open

question.

K. Kalpakis, Y. Yesha, (1997)

The bisection width of the transposition network Tn is equal to:

1) nn!/4, if n is even.

2) (1 + 0(1))nn!/4, if n > 3 is odd.

Useful reference: X. Liu, S. Zhou, (2019)

Eigenvalues of Cayley graphs, 115 p. (https://arxiv.org/abs/1809.09829)
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Eigenfunctions of the Star graphs

S. Goryainov, V. Kabanov, E.K., L. Shalaginov,
A. Valyuzhenich, (2020, 2021)

A family of eigenfunctions with non-zero eigenvalues of Sn is obtained. For

any eigenvalue n −m − 1, where n > 2m, a connection of these functions

with the standard basis of a Specht module for Symn is established. For

the largest non-principal eigenvalue n − 2, it is proved that any

eigenfunction of the Star graphs Sn can be reconstructed by its values on

the second neighbourhood of a vertex.

A characterization of (n − 2)-eigenfunctions with the minimum cardinality

of the support 2(n − 1)! is obtained.

V. Kabanov, E.K., L. Shalaginov, A. Valyuzhenich, (2020)

An arbitrary (n − 2)-eigenfunction of the Star graphs Sn with the minimum

cardinality of the support is the di�erence of the characteristic functions of

two completely regular codes of covering radius 2.
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THANK YOU FOR ATTENTION!


