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Chromatic properties: the chromatic number χ

A mapping c : V (Γ)→ {1, 2, . . . , k} is called a proper k–coloring of a
graph Γ = (V ,E ) if c(u) 6= c(v) whenever u and v are adjacent.

The chromatic number χ = χ(Γ) of a graph Γ is the least number of
colors needed to color vertices of Γ.

A subset of vertices assigned to the same color forms an independent set,
i.e. a k–coloring is the same as a partition of the vertex set into k
independent sets.

Known bounds

R. L. Brooks (1941): χ 6 ∆ (except Kn; Cn, n is odd)

P. A. Catlin (1978): χ 6 2
3 (∆ + 3) (for C4–free graphs)

A. Johansson (1996): χ 6 O
(

∆
log∆

)
(for C3–free graphs)
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Chromatic properties: the chromatic index χ′

The chromatic index χ′ = χ′(Γ) of a graph Γ is the least number of colors
needed to color edges of Γ s.t. no two adjacent edges share the same color.

Known bounds

V. G. Vizing (1968): ∆ 6 χ′ 6 ∆ + 1

∆ = ∆(Γ) is the maximum degree of Γ
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Chromatic properties: the total chromatic number χ′′

In the total coloring of a graph Γ it is assumed that no adjacent vertices,
no adjacent edges, no edge and its endvertices are assigned the same color.

The total chromatic number χ′′ = χ′′(Γ) of a graph Γ is the least number
of colors needed in any total coloring of Γ.

Known bounds

V. G. Vizing (1968): ∆ + 1 6 χ′′ (from the definition)

Total coloring conjecture

V. G. Vizing, V. Behzad (1964-1968): χ′′ 6 ∆ + 2
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Cayley graphs

Let G be a finite group, and let S ⊂ G be a set of group elements as a set
of generators for a group such that e 6∈ S and S = S−1.

In the Cayley graph Γ = Cay(G , S) = (V ,E ) vertices correspond to the
elements of the group, i.e. V = G , and edges correspond to the action of
the generators, i.e. E = {{g , gs} : g ∈ G , s ∈ S}.

Properties

(i) Γ is a connected |S |–regular graph;
(ii) Γ is a vertex–transitive graph.

Trivial bounds

From the Brooks’ bound: χ 6 |S | (vertex coloring)
From the Vizing’ bound: χ′ = |S | (edge coloring)
From the Vizing’ bound: |S |+ 1 6 χ′′ (total coloring)
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Random Cayley graphs

Let G be a finite group of order n, and let S ⊂ G be a random subset of
G obtained by choosing randomly, uniformly and independently (with
repetitions) k 6 n/2 elements of G , and by letting S be the set of these
elements and their inverses, without the identity. Thus, |S | 6 2k.

In the random Cayley graph Γ(G , k) vertices correspond to the elements of
the group and edges correspond to the action of the random k generators.

Trivial bounds

From the Brooks’ bound: χ 6 2k + 1 (for any finite group G )
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N. Alon (2013): General results for random Cayley graphs

General groups

For any group G of order n, and any k 6 n/2, the chromatic number
χ(G , k) satisfies a.a.s.:

Ω

((
k

log k

)1/2
)

6 χ(G , k) 6 O

(
k

log k

)

a.a.s.=asymptotically almost surely, i.e.,
the probability it holds tends to 1 as n tends to infinity

We write:
f = O (g), if f 6 c1g + c2 for two functions f and g .
f = Ω (g), if g = O (f ).
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N. Alon (2013): General results for random Cayley graphs

General cyclic groups

For any fixed ε > 0, if n is integer and 1 6 k 6 (1− ε) log3 n, the
chromatic number χ(Zn, k) for any cyclic group Zn satisfies a.a.s.:

χ(Zn, k) 6 3

a.a.s.=asymptotically almost surely
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N. Alon (2013): General results for random Cayley graphs

General abelian groups

For any abelian group G of size n and any k 6 1
4 log log(n), the chromatic

number χ(G , k) satisfies a.a.s.:

χ(G , k) 6 3

a.a.s.=asymptotically almost surely
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N. Alon (2013): Particular results

Elementary abelian 2-groups

For any elementary abelian 2-group Zt
2 of order n = 2t , and for all

k < 0.99 log2 n, the chromatic number χ(Zt
2, k) satisfies a.a.s.:

χ(Zt
2, k) = 2

So, for these groups it is typically 2.
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N. Alon (2013): Open questions

• non-abelian case;

• in particular, the symmetric group:

“The general problem of determining or estimating more
accurately the chromatic number of a random Cayley graph in a
given group with a prescribed number of randomly chosen
generators deserves more attention. It may be interesting, in
particular, to study the case of the symmetric group Symn.”

N. Alon, The chromatic number of random Cayley graphs, European
Journal of Combinatorics, 34 (2013) 1232–1243.
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Cayley graphs on the symmetric group Symn

L. Babai (1978)

Every group has a Cayley graph of chromatic number 6 ω; for solvable
groups the minimum chromatic number is at most 3.

ω is the clique number of a graph (the size of a largest clique).

R . L. Graham,M . Grötshel , L. Lov ász(Eds.) (1995)
”Handbook of Combinatorics”, Vol.1

Every finite group has a Cayley graph of chromatic number 6 4.

Remark: This is a consequence of the fact that every finite simple group is
generated by at most 2 elements.

Elena Konstantinova Chromatic properties of Cayley graphs Ljubljana-2015 12 / 25



Bichromatic Cayley graphs on Symn

Necessary and sufficient conditions

Let Γ = Cay(Symn,S) is a Cayley graph on the symmetric group Symn.
Then Γ is bichromatic ⇐⇒ S does not contain even permutations.

It follows from the Kelarev’s result, which describes all finite inverse
semigroups with bipartite Cayley graphs.

A.V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup forum
72 (2006) 411–418.
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Bichromatic random Cayley graphs on Symn

EK, Kristina Rogalskaya (2015)

Let a generating set S of a random Cayley graph Γ = Cay(Symn, S)
consists of k randomly chosen generators of Symn. If n > 2 and k < n!

2 ,
then Γ = Cay(Symn,S) is not, asymptotically almost surely, bichromatic.

However, these results don’t give the conditions for a random Cayley graph
Γ to be connected.

Open question

What are the necessary and sufficient conditions for Γ = Cay(Symn,S) to
be connected, where S is a randomly chosen generating set?
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Connected Cayley graphs on Symn

Question

What are the necessary and sufficient conditions for Γ = Cay(Symn,S) to
be connected?

T . Chen, S . Skiena (1996)

Let S of a Cayley graph Γ = Cay(Symn,S) consists of all reversals of fixed
length `: [π1 . . . πi . . . πi+`−1 . . . πn]rl = [π1 . . . πi+`−1 . . . πi . . . πn].

Then Γ = Cay(Symn, S) is connected ⇐⇒ ` ≡ 2 (mod 4).

In this case |S | = n − ` and the number of such sets is equal to bn+1
4 c.

T. Chen, S. Skiena, Sorting with fixed-length reversals, Discrete applied
mathematics, 71 (1996) 269–295.
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Known connected Cayley graphs on Symn

The Bubble-Sort graph Bn

The Bubble-Sort graph is the Cayley graph on the symmetric group
Symn, n > 3 with the generating set {(i i + 1) ∈ Symn, 1 6 i 6 n − 1}.

The Star graph Sn

The Star graph is the Cayley graph on the symmetric group Symn, n > 3
with the generating set {(1 i) ∈ Symn, 2 6 i 6 n}.

Example: S3 = Cay(Sym3, {(1 2), (1 3)} ∼= C6
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Bichromatic Star graph
S4 = Cay(Sym4, {(1 2), (1 3), (1 4)}

Picture: Tomo Pisanski
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Connected Cayley graphs on Symn: the Pancake graph

The Pancake graph Pn

The Pancake graph is the Cayley graph on the symmetric group Symn with
generating set {ri ∈ Symn, 1 6 i < n}, where ri is the operation of
reversing the order of any substring [1, i ], 1 < i 6 n, of a permutation π
when multiplied on the right, i.e.,
[π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn].

Properties

• connected
• (n − 1)–regular
• vertex–transitive
• has a hierarchical structure
• is hamiltonian
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Chromatic properties of the Pancake graph (EK, 2015)

Total chromatic number

χ′′(Pn) = n for any n > 3.

Total chromatic index

χ′(Pn) = n − 1 for any n > 3.

The chromatic index of the Pancake graphs is obtained from Vizing’s
bound χ′ > ∆ taking into account the edge coloring, in which the color
(i − 1) is assigned to the prefix–reversal ri , 2 6 i 6 n.

Chromatic number

χ(Pn) 6 n − 2 for any n > 5.
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3-coloring of P4: hamiltonian drawing

Picture: Tomo Pisanski
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3-coloring of P4: hierarchical drawing
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Picture: K. Rogalskaya

Idea: A. Williams (2013)
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3-coloring of one copy of P5: hierarchical drawing
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Picture: K. Rogalskaya

Idea: A. Williams (2013)
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3-coloring P5: hierarchical drawing
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The chromatic number of the Pancake graph (EK, 2015)

Theorem

The following holds for Pn:
1) if 5 6 n 6 8, then

χ(Pn) 6

{
n − k , if n ≡ k (mod 4) for k = 1, 3;
n − 2, if n is even;

(1)

2) if 9 6 n 6 16, then

χ(Pn) 6

{
n − (k + 2), if n ≡ k (mod 4) for k = 1, 3;
n − 4, if n is even;

(2)

3) if n > 17, then

χ(Pn) 6

{
n − (k + 4), if n ≡ k (mod 4) for k = 1, 2, 3;
n − 8, if n ≡ 0 (mod 4).

(3)
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Exact values of the chromatic number for Pn

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

χ 2 3 3 4 4 6? 6? 6? 6? 6? 6? 6? 6? 6? 12?

n = 4, 5: examples

n = 6: Jernej Azarija computed optimal 4-coloring

n = 7: since Pn−1 is an induced subgraph of Pn,
χ(P7) is at least 4, and due to (1) in Theorem we have that χ(P7) = 4

n = 8: from (1) in Theorem we have 4 6 χ(P8) 6 6

9 6 n 6 16: from (2) in Theorem we have 4 6 χ(P8) 6 6
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