Chromatic properties of Cayley graphs

Elena Konstantinova

Sobolev Institute of Mathematics

Novosibirsk State University

Mathematical Colloquium, Ljubljana, Slovenia October 2, 2015

Chromatic properties: the chromatic number χ

A mapping $c : V(\Gamma) \to \{1, 2, ..., k\}$ is called a *proper k–coloring* of a graph $\Gamma = (V, E)$ if $c(u) \neq c(v)$ whenever u and v are adjacent.

The chromatic number $\chi = \chi(\Gamma)$ of a graph Γ is the least number of colors needed to color vertices of Γ .

A subset of vertices assigned to the same color forms an independent set, i.e. a k-coloring is the same as a partition of the vertex set into k independent sets.

Known bounds

 R. L. Brooks (1941):
 χ

 P. A. Catlin (1978):
 χ

 A. Johansson (1996):
 χ

$$\chi \leq \Delta$$
$$\chi \leq \frac{2}{3} (\Delta + 3)$$
$$\chi \leq O\left(\frac{\Delta}{\log \Delta}\right)$$

(except K_n; C_n, n is odd) (for C₄-free graphs) (for C₃-free graphs)

Chromatic properties: the chromatic index χ'

The chromatic index $\chi' = \chi'(\Gamma)$ of a graph Γ is the least number of colors needed to color edges of Γ s.t. no two adjacent edges share the same color.

Known boundsV. G. Vizing (1968): $\Delta \leqslant \chi' \leqslant \Delta + 1$

 $\Delta = \Delta(\Gamma)$ is the maximum degree of Γ

Chromatic properties: the total chromatic number χ''

In the *total coloring* of a graph Γ it is assumed that no adjacent vertices, no adjacent edges, no edge and its endvertices are assigned the same color.

The total chromatic number $\chi'' = \chi''(\Gamma)$ of a graph Γ is the least number of colors needed in any total coloring of Γ .

Known bounds

V. G. Vizing (1968): $\Delta + 1 \leqslant \chi''$

(from the definition)

Total coloring conjecture

V. G. Vizing, V. Behzad (1964-1968): χ

$$\chi'' \leqslant \Delta + 2$$

< ロ > < 同 > < 回 > < 回 >

Cayley graphs

Let G be a finite group, and let $S \subset G$ be a set of group elements as a set of generators for a group such that $e \notin S$ and $S = S^{-1}$.

In the Cayley graph $\Gamma = Cay(G, S) = (V, E)$ vertices correspond to the elements of the group, i.e. V = G, and edges correspond to the action of the generators, i.e. $E = \{\{g, gs\} : g \in G, s \in S\}$.

Properties

(i) Γ is a connected |S|-regular graph;
(ii) Γ is a vertex-transitive graph.

Trivial bounds

From the Brooks' bound: From the Vizing' bound: From the Vizing' bound:

$$\chi \leqslant |S| \ \chi' = |S| \ |S| + 1 \leqslant \chi''$$

(vertex coloring) (edge coloring) (total coloring)

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a finite group of order n, and let $S \subset G$ be a random subset of G obtained by choosing randomly, uniformly and independently (with repetitions) $k \leq n/2$ elements of G, and by letting S be the set of these elements and their inverses, without the identity. Thus, $|S| \leq 2k$.

In the random Cayley graph $\Gamma(G, k)$ vertices correspond to the elements of the group and edges correspond to the action of the random k generators.

Trivial bounds

From the Brooks' bound:

 $\chi \leqslant 2k + 1$ (for any finite group G)

N. Alon (2013): General results for random Cayley graphs

General groups

For any group G of order n, and any $k \leq n/2$, the chromatic number $\chi(G, k)$ satisfies a.a.s.:

$$\Omega\left(\left(\frac{k}{\log k}\right)^{1/2}\right) \leqslant \chi(G,k) \leqslant O\left(\frac{k}{\log k}\right)$$

a.a.s.=asymptotically almost surely, i.e., the probability it holds tends to 1 as n tends to infinity

We write: f = O(g), if $f \leq c_1g + c_2$ for two functions f and g. $f = \Omega(g)$, if g = O(f).

General cyclic groups

For any fixed $\epsilon > 0$, if n is integer and $1 \leq k \leq (1 - \epsilon) \log_3 n$, the chromatic number $\chi(\mathbb{Z}_n, k)$ for any cyclic group \mathbb{Z}_n satisfies a.a.s.:

 $\chi(\mathbb{Z}_n,k) \leqslant 3$

a.a.s.=asymptotically almost surely

General abelian groups

For any abelian group G of size n and any $k \leq \frac{1}{4} \log \log(n)$, the chromatic number $\chi(G, k)$ satisfies a.a.s.:

 $\chi(G,k) \leqslant 3$

a.a.s.=asymptotically almost surely

Elementary abelian 2-groups

For any elementary abelian 2-group \mathbb{Z}_2^t of order $n = 2^t$, and for all $k < 0.99 \log_2 n$, the chromatic number $\chi(\mathbb{Z}_2^t, k)$ satisfies a.a.s.:

 $\chi(\mathbb{Z}_2^t,k)=2$

So, for these groups it is typically 2.

- non-abelian case;
- in particular, the symmetric group:

"The general problem of determining or estimating more accurately the chromatic number of a random Cayley graph in a given group with a prescribed number of randomly chosen generators deserves more attention. It may be interesting, in particular, to study the case of the symmetric group Sym_n."

N. Alon, The chromatic number of random Cayley graphs, *European Journal of Combinatorics*, 34 (2013) 1232–1243.

L. Babai (1978)

Every group has a Cayley graph of chromatic number $\leq \omega$; for solvable groups the minimum chromatic number is at most 3.

 ω is the clique number of a graph (the size of a largest clique).

R. L. Graham, *M. Grötshel*, *L. Lovász*(*Eds.*) (1995) "Handbook of Combinatorics", Vol.1

Every finite group has a Cayley graph of chromatic number ≤ 4 .

Remark: This is a consequence of the fact that every finite simple group is generated by at most 2 elements.

イロト イポト イヨト イヨト

Necessary and sufficient conditions

Let $\Gamma = Cay(Sym_n, S)$ is a Cayley graph on the symmetric group Sym_n . Then Γ is bichromatic $\iff S$ does not contain even permutations.

It follows from the Kelarev's result, which describes all finite inverse semigroups with bipartite Cayley graphs.

A.V. Kelarev, On Cayley graphs of inverse semigroups, *Semigroup forum* 72 (2006) 411–418.

EK, Kristina Rogalskaya (2015)

Let a generating set S of a random Cayley graph $\Gamma = Cay(Sym_n, S)$ consists of k randomly chosen generators of Sym_n . If $n \ge 2$ and $k < \frac{n!}{2}$, then $\Gamma = Cay(Sym_n, S)$ is not, asymptotically almost surely, bichromatic.

However, these results don't give the conditions for a random Cayley graph Γ to be connected.

Open question

What are the necessary and sufficient conditions for $\Gamma = Cay(Sym_n, S)$ to be connected, where S is a randomly chosen generating set?

・ロト ・得ト ・ヨト ・ヨト

Question

What are the necessary and sufficient conditions for $\Gamma = Cay(Sym_n, S)$ to be connected?

T. Chen, S. Skiena (1996)

Let S of a Cayley graph $\Gamma = Cay(Sym_n, S)$ consists of all reversals of fixed length ℓ : $[\pi_1 \dots \underline{\pi_i \dots \pi_{i+\ell-1}} \dots \pi_n]r_l = [\pi_1 \dots \underline{\pi_{i+\ell-1}} \dots \pi_n]$. Then $\Gamma = Cay(Sym_n, S)$ is connected $\iff \ell \equiv 2 \pmod{4}$. In this case $|S| = n - \ell$ and the number of such sets is equal to $|\frac{n+1}{4}|$.

T. Chen, S. Skiena, Sorting with fixed-length reversals, *Discrete applied mathematics*, 71 (1996) 269–295.

・ロト ・同ト ・ヨト ・ヨト

Known connected Cayley graphs on Sym_n

The Bubble-Sort graph B_n

The Bubble-Sort graph is the Cayley graph on the symmetric group Sym_n , $n \ge 3$ with the generating set $\{(i \ i + 1) \in Sym_n, 1 \le i \le n - 1\}$.

The Star graph S_n

The Star graph is the Cayley graph on the symmetric group Sym_n , $n \ge 3$ with the generating set $\{(1 \ i) \in Sym_n, 2 \le i \le n\}$.

Example: $S_3 = Cay(Sym_3, \{(1 \ 2), (1 \ 3)\} \cong C_6$

Bichromatic Star graph $S_4 = Cay(Sym_4, \{(1 \ 2), (1 \ 3), (1 \ 4)\}$

Picture: Tomo Pisanski

Elena Konstantinova

Chromatic properties of Cayley graphs

Ljubljana-2015 1

17 / 25

The Pancake graph P_n

The Pancake graph is the Cayley graph on the symmetric group Sym_n with generating set $\{r_i \in Sym_n, 1 \leq i < n\}$, where r_i is the operation of reversing the order of any substring [1, i], $1 < i \leq n$, of a permutation π when multiplied on the right, i.e.,

$$[\underline{\pi_1\ldots\pi_i}\pi_{i+1}\ldots\pi_n]r_i=[\underline{\pi_i\ldots\pi_1}\pi_{i+1}\ldots\pi_n].$$

Properties

- connected
- (n − 1)−regular
- vertex-transitive
- has a hierarchical structure
- is hamiltonian

Chromatic properties of the Pancake graph (EK, 2015)

Total chromatic number

 $\chi''(P_n) = n$ for any $n \ge 3$.

Total chromatic index

 $\chi'(P_n) = n - 1$ for any $n \ge 3$.

The chromatic index of the Pancake graphs is obtained from Vizing's bound $\chi' \ge \Delta$ taking into account the edge coloring, in which the color (i-1) is assigned to the prefix-reversal r_i , $2 \le i \le n$.

Chromatic number

 $\chi(P_n) \leqslant n-2$ for any $n \ge 5$.

イロト イポト イヨト イヨト

3-coloring of P₄: hamiltonian drawing

Picture: Tomo Pisanski

Elena Konstantinova

Chromatic properties of Cayley graphs

Ljubljana-2015

20 / 25

3-coloring of P_4 : hierarchical drawing

Picture: K. Rogalskaya

Idea: A. Williams (2013)

Chromatic properties of Cayley graphs

Ljubljana-2015 21 / 25

3

3-coloring of one copy of P_5 : hierarchical drawing

Picture: K. Rogalskaya

Idea: A. Williams (2013)

Chromatic properties of Cayley graphs

Ljubljana-2015 22 / 25

э

3-coloring P₅: hierarchical drawing

Elena Konstantinova

Chromatic properties of Cayley graphs

Ljubljana-2015 23 / 25

The chromatic number of the Pancake graph (EK, 2015)

Theorem

The following holds for P_n : 1) if $5 \le n \le 8$, then

$$\chi(P_n) \leqslant \begin{cases} n-k, & \text{if } n \equiv k \pmod{4} \text{ for } k = 1,3; \\ n-2, & \text{if } n \text{ is even}; \end{cases}$$
(1)

2) if $9 \leqslant n \leqslant 16$, then

$$\chi(P_n) \leqslant \begin{cases} n - (k+2), & \text{if } n \equiv k \pmod{4} \text{ for } k = 1, 3; \\ n - 4, & \text{if } n \text{ is even}; \end{cases}$$
(2)

3) if $n \ge 17$, then

$$\chi(P_n) \leqslant \begin{cases} n - (k+4), & \text{if } n \equiv k \pmod{4} \text{ for } k = 1, 2, 3; \\ n - 8, & \text{if } n \equiv 0 \pmod{4}. \end{cases}$$

=

(3)

															17
χ	2	3	3	4	4	6?	6?	6?	6?	6?	6?	6?	6?	6?	12?

n = 4, 5: examples

 $\underline{n=6}$: Jernej Azarija computed optimal 4-coloring

<u>*n* = 7</u>: since P_{n-1} is an induced subgraph of P_n , $\chi(P_7)$ is at least 4, and due to (1) in Theorem we have that $\chi(P_7) = 4$ <u>*n* = 8</u>: from (1) in Theorem we have $4 \leq \chi(P_8) \leq 6$ $9 \leq n \leq 16$: from (2) in Theorem we have $4 \leq \chi(P_8) \leq 6$