Chromatic properties of Cayley graphs

Elena Konstantinova
Sobolev Institute of Mathematics
Novosibirsk State University

Mathematical Colloquium, Ljubljana, Slovenia
October 2, 2015

Chromatic properties: the chromatic number χ

A mapping $c: V(\Gamma) \rightarrow\{1,2, \ldots, k\}$ is called a proper k-coloring of a graph $\Gamma=(V, E)$ if $c(u) \neq c(v)$ whenever u and v are adjacent.

The chromatic number $\chi=\chi(\Gamma)$ of a graph Γ is the least number of colors needed to color vertices of Γ.

A subset of vertices assigned to the same color forms an independent set, i.e. a k-coloring is the same as a partition of the vertex set into k independent sets.

Known bounds

R. L. Brooks (1941): $\quad \chi \leqslant \Delta$
P. A. Catlin (1978): $\quad \chi \leqslant \frac{2}{3}(\Delta+3)$
(except $K_{n} ; C_{n}, n$ is odd)
A. Johansson (1996): $\quad \chi \leqslant O\left(\frac{\Delta}{\log \Delta}\right)$ (for C_{4}-free graphs) (for C_{3}-free graphs)

Chromatic properties: the chromatic index χ^{\prime}

The chromatic index $\chi^{\prime}=\chi^{\prime}(\Gamma)$ of a graph Γ is the least number of colors needed to color edges of Γ s.t. no two adjacent edges share the same color.

Known bounds

V. G. Vizing (1968): $\quad \Delta \leqslant \chi^{\prime} \leqslant \Delta+1$
$\Delta=\Delta(\Gamma)$ is the maximum degree of Γ

Chromatic properties: the total chromatic number $\chi^{\prime \prime}$

In the total coloring of a graph Γ it is assumed that no adjacent vertices, no adjacent edges, no edge and its endvertices are assigned the same color.
The total chromatic number $\chi^{\prime \prime}=\chi^{\prime \prime}(\Gamma)$ of a graph Γ is the least number of colors needed in any total coloring of Γ.

Known bounds
V. G. Vizing (1968): $\Delta+1 \leqslant \chi^{\prime \prime} \quad$ (from the definition)

Total coloring conjecture

V. G. Vizing, V. Behzad (1964-1968): $\quad \chi^{\prime \prime} \leqslant \Delta+2$

Cayley graphs

Let G be a finite group, and let $S \subset G$ be a set of group elements as a set of generators for a group such that $e \notin S$ and $S=S^{-1}$.

In the Cayley graph $\Gamma=\operatorname{Cay}(G, S)=(V, E)$ vertices correspond to the elements of the group, i.e. $V=G$, and edges correspond to the action of the generators, i.e. $E=\{\{g, g s\}: g \in G, s \in S\}$.

Properties

(i) Γ is a connected $|S|$-regular graph;
(ii) Γ is a vertex-transitive graph.

Trivial bounds

From the Brooks' bound:

$$
\begin{array}{r}
\chi \leqslant|S| \\
\chi^{\prime}=|S| \\
|S|+1 \leqslant \chi^{\prime \prime}
\end{array}
$$

From the Vizing' bound:
(vertex coloring) (edge coloring)
From the Vizing' bound:

Random Cayley graphs

Let G be a finite group of order n, and let $S \subset G$ be a random subset of G obtained by choosing randomly, uniformly and independently (with repetitions) $k \leqslant n / 2$ elements of G, and by letting S be the set of these elements and their inverses, without the identity. Thus, $|S| \leqslant 2 k$.

In the random Cayley graph $\Gamma(G, k)$ vertices correspond to the elements of the group and edges correspond to the action of the random k generators.

Trivial bounds

From the Brooks' bound:

$$
\chi \leqslant 2 k+1 \text { (for any finite group } G)
$$

N. Alon (2013): General results for random Cayley graphs

General groups

For any group G of order n, and any $k \leqslant n / 2$, the chromatic number $\chi(G, k)$ satisfies a.a.s.:

$$
\Omega\left(\left(\frac{k}{\log k}\right)^{1 / 2}\right) \leqslant \chi(G, k) \leqslant O\left(\frac{k}{\log k}\right)
$$

a.a.s. $=$ asymptotically almost surely, i.e., the probability it holds tends to 1 as n tends to infinity

We write:
$f=O(g)$, if $f \leqslant c_{1} g+c 2$ for two functions f and g.
$f=\Omega(g)$, if $g=O(f)$.

N. Alon (2013): General results for random Cayley graphs

General cyclic groups

For any fixed $\epsilon>0$, if n is integer and $1 \leqslant k \leqslant(1-\epsilon) \log _{3} n$, the chromatic number $\chi\left(\mathbb{Z}_{n}, k\right)$ for any cyclic group \mathbb{Z}_{n} satisfies a.a.s.:

$$
\chi\left(\mathbb{Z}_{n}, k\right) \leqslant 3
$$

a.a.s. $=$ asymptotically almost surely

N. Alon (2013): General results for random Cayley graphs

General abelian groups

For any abelian group G of size n and any $k \leqslant \frac{1}{4} \log \log (n)$, the chromatic number $\chi(G, k)$ satisfies a.a.s.:

$$
\chi(G, k) \leqslant 3
$$

a.a.s. $=$ asymptotically almost surely

N. Alon (2013): Particular results

Elementary abelian 2-groups

For any elementary abelian 2-group \mathbb{Z}_{2}^{t} of order $n=2^{t}$, and for all $k<0.99 \log _{2} n$, the chromatic number $\chi\left(\mathbb{Z}_{2}^{t}, k\right)$ satisfies a.a.s.:

$$
\chi\left(\mathbb{Z}_{2}^{t}, k\right)=2
$$

So, for these groups it is typically 2.

N. Alon (2013): Open questions

- non-abelian case;
- in particular, the symmetric group:
> "The general problem of determining or estimating more accurately the chromatic number of a random Cayley graph in a given group with a prescribed number of randomly chosen generators deserves more attention. It may be interesting, in particular, to study the case of the symmetric group Sym.."
N. Alon, The chromatic number of random Cayley graphs, European Journal of Combinatorics, 34 (2013) 1232-1243.

Cayley graphs on the symmetric group Sym_{n}

L. Babai (1978)

Every group has a Cayley graph of chromatic number $\leqslant \omega$; for solvable groups the minimum chromatic number is at most 3 .
ω is the clique number of a graph (the size of a largest clique).
R. L. Graham, M. Grötshel, L. Lovász(Eds.) (1995) "Handbook of Combinatorics", Vol. 1

Every finite group has a Cayley graph of chromatic number $\leqslant 4$.

Remark: This is a consequence of the fact that every finite simple group is generated by at most 2 elements.

Bichromatic Cayley graphs on $S_{y m}$

Necessary and sufficient conditions

Let $\Gamma=\operatorname{Cay}\left(\right.$ Sym $\left._{n}, S\right)$ is a Cayley graph on the symmetric group Sym n. Then Γ is bichromatic $\Longleftrightarrow S$ does not contain even permutations.

It follows from the Kelarev's result, which describes all finite inverse semigroups with bipartite Cayley graphs.
A.V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup forum 72 (2006) 411-418.

Bichromatic random Cayley graphs on Sym_{n}

EK, Kristina Rogalskaya (2015)

Let a generating set S of a random Cayley graph $\Gamma=\operatorname{Cay}\left(S_{y m}, S\right)$ consists of k randomly chosen generators of Sym n. If $n \geqslant 2$ and $k<\frac{n!}{2}$, then $\Gamma=\operatorname{Cay}\left(S_{y m}, S\right)$ is not, asymptotically almost surely, bichromatic.

However, these results don't give the conditions for a random Cayley graph Γ to be connected.

Open question

What are the necessary and sufficient conditions for $\Gamma=\operatorname{Cay}\left(\operatorname{Sym}_{n}, S\right)$ to be connected, where S is a randomly chosen generating set?

Connected Cayley graphs on $S_{y m}$

Question

What are the necessary and sufficient conditions for $\Gamma=\operatorname{Cay}\left(\operatorname{Sym}_{n}, S\right)$ to be connected?

T. Chen, S. Skiena (1996)

Let S of a Cayley graph $\Gamma=\operatorname{Cay}\left(S y m_{n}, S\right)$ consists of all reversals of fixed length $\ell:\left[\pi_{1} \ldots \underline{\pi_{i} \ldots \pi_{i+\ell-1}} \ldots \pi_{n}\right] r_{l}=\left[\pi_{1} \ldots \underline{\pi_{i+\ell-1} \ldots \pi_{i}} \ldots \pi_{n}\right]$.

Then $\Gamma=\operatorname{Cay}\left(\operatorname{Sym}_{n}, S\right)$ is connected $\Longleftrightarrow \ell \equiv 2(\bmod 4)$.
In this case $|S|=n-\ell$ and the number of such sets is equal to $\left\lfloor\frac{n+1}{4}\right\rfloor$.
T. Chen, S. Skiena, Sorting with fixed-length reversals, Discrete applied mathematics, 71 (1996) 269-295.

Known connected Cayley graphs on Sym_{n}

The Bubble-Sort graph B_{n}

The Bubble-Sort graph is the Cayley graph on the symmetric group Sym $_{n}, n \geqslant 3$ with the generating set $\left\{(i+1) \in \operatorname{Sym}_{n}, 1 \leqslant i \leqslant n-1\right\}$.

The Star graph S_{n}

The Star graph is the Cayley graph on the symmetric group Sym $_{n}, n \geqslant 3$ with the generating set $\left\{(1 i) \in \operatorname{Sym}_{n}, 2 \leqslant i \leqslant n\right\}$.

Example: $S_{3}=\operatorname{Cay}\left(\operatorname{Sym}_{3},\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\} \cong C_{6}\right.$

Bichromatic Star graph $S_{4}=\operatorname{Cay}\left(\right.$ Sym $_{4},\{(12),(13),(14)\}$

Picture: Tomo Pisanski

Connected Cayley graphs on S_{n} : the Pancake graph

The Pancake graph P_{n}

The Pancake graph is the Cayley graph on the symmetric group Sym $_{n}$ with generating set $\left\{r_{i} \in\right.$ Sym $\left._{n}, 1 \leqslant i<n\right\}$, where r_{i} is the operation of reversing the order of any substring $[1, i], 1<i \leqslant n$, of a permutation π when multiplied on the right, i.e.,
$\left[\underline{\left.\pi_{1} \ldots \pi_{i} \pi_{i+1} \ldots \pi_{n}\right] r_{i}=\left[\underline{\pi_{i} \ldots \pi_{1}} \pi_{i+1} \ldots \pi_{n}\right] . ~ . ~ . ~}\right.$

Properties

- connected
- $(n-1)$-regular
- vertex-transitive
- has a hierarchical structure
- is hamiltonian

Chromatic properties of the Pancake graph (EK, 2015)

> Total chromatic number
> $\chi^{\prime \prime}\left(P_{n}\right)=n$ for any $n \geqslant 3$.

$$
\begin{aligned}
& \text { Total chromatic index } \\
& \chi^{\prime}\left(P_{n}\right)=n-1 \text { for any } n \geqslant 3 .
\end{aligned}
$$

The chromatic index of the Pancake graphs is obtained from Vizing's bound $\chi^{\prime} \geqslant \Delta$ taking into account the edge coloring, in which the color $(i-1)$ is assigned to the prefix-reversal $r_{i}, 2 \leqslant i \leqslant n$.

Chromatic number

$\chi\left(P_{n}\right) \leqslant n-2$ for any $n \geqslant 5$.

3-coloring of P_{4} : hamiltonian drawing

Picture: Tomo Pisanski

3-coloring of P_{4} : hierarchical drawing

Picture: K. Rogalskaya
Idea: A. Williams (2013)

3-coloring of one copy of P_{5} : hierarchical drawing

Picture: K. Rogalskaya
Idea: A. Williams (2013)

3-coloring P_{5} : hierarchical drawing

The chromatic number of the Pancake graph (EK, 2015)

Theorem

The following holds for P_{n} :

1) if $5 \leqslant n \leqslant 8$, then

$$
\chi\left(P_{n}\right) \leqslant \begin{cases}n-k, & \text { if } n \equiv k(\bmod 4) \text { for } k=1,3 ; \tag{1}\\ n-2, & \text { if } n \text { is even; }\end{cases}
$$

2) if $9 \leqslant n \leqslant 16$, then

$$
\chi\left(P_{n}\right) \leqslant \begin{cases}n-(k+2), & \text { if } n \equiv k(\bmod 4) \text { for } k=1,3 ; \tag{2}\\ n-4, & \text { if } n \text { is even; }\end{cases}
$$

3) if $n \geqslant 17$, then

$$
\chi\left(P_{n}\right) \leqslant \begin{cases}n-(k+4), & \text { if } n \equiv k(\bmod 4) \text { for } k=1,2,3 ; \tag{3}\\ n-8, & \text { if } n \equiv 0(\bmod 4) .\end{cases}
$$

Exact values of the chromatic number for P_{n}

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
χ	2	3	3	4	4	$6 ?$	$6 ?$	$6 ?$	$6 ?$	$6 ?$	$6 ?$	$6 ?$	$6 ?$	$6 ?$	$12 ?$

$n=4,5:$ examples
$\underline{n=6}$: Jernej Azarija computed optimal 4-coloring
$n=7$: since P_{n-1} is an induced subgraph of P_{n},
$\chi\left(P_{7}\right)$ is at least 4, and due to (1) in Theorem we have that $\chi\left(P_{7}\right)=4$
$\underline{n=8}$: from (1) in Theorem we have $4 \leqslant \chi\left(P_{8}\right) \leqslant 6$
$\underline{9 \leqslant n \leqslant 16: ~ f r o m ~(2) ~ i n ~ T h e o r e m ~ w e ~ h a v e ~} 4 \leqslant \chi\left(P_{8}\right) \leqslant 6$

