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Graphs and problems

Graphs

• Star graph
• Pancake graph

Problems

• Hamiltonicicty
• Automorphism group
• Perfect codes
• Diameter
• Colouring
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Cayley graphs

Let G be a group, and let S ⊂ G be a set of group elements as a set of
generators for a group such that e 6∈ S and S = S−1.

Definition

In the Cayley graph Γ = Cay(G ,S) = (V ,E ) vertices correspond to the
elements of the group, i.e. V = G, and edges correspond to the action of
the generators, i.e. E = {(g , gs) : g ∈ G , s ∈ S}.

The definition of Cayley graph was introduced by A. Cayley in 1878 to
explain the concept of abstract groups which are generated by a set of
generators in Cayley’s time.

Properties

(i) Γ is a connected regular graph of degree |S |;
(ii) Γ is a vertex–transitive graph.
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Star and Pancake graphs: definitions

The Star graph Sn

is the Cayley graph on the symmetric group Symn with generating set
{ti ∈ Symn, 1 6 i < n}, where ti is the operation of transposing the 1st
and ith elements, 2 6 i 6 n, of a permutation π when multiplied on the
right, i.e. [π1π2 . . . πi−1πiπi+1 . . . πn]ti = [πiπ2 . . . πi−1π1πi+1 . . . πn].

The Pancake graph Pn

is the Cayley graph on the symmetric group Symn with generating set
{ri ∈ Symn, 1 6 i < n}, where ri is the operation of reversing the order of
any substring [1, i ], 1 < i 6 n, of a permutation π when multiplied on the
right, i.e., [π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn].
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Star and Pancake graphs: examples
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Star and Pancake graphs: properties

Let Γn ∈ {Sn,Pn}.

Properties

• Γn is connected
• Γn is (n − 1)–regular
• Γn is vertex–transitive
• Γn has a hierarchical structure
• Γn is hamiltonian
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Star and Pancake graphs: hierarchical structure

Γn consists of n copies Γn−1(i) = (V i ,E i ), 1 6 i 6 n, where the vertex set
V i is presented by permutations with the fixed last element.
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Hamiltonicity

Hamiltonian graph

A graph is hamiltonian if it contains a hamiltonian cycle.

Testing whether a graph is hamiltonian is an NP-complete problem.

Lov ász conjecture, 1970

Every connected vertex–transitive graph has a hamiltonian path.

Folk conjecture

Every connected Cayley graph on a finite group has a hamiltonian cycle.

It is true for abelian groups.
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Hamiltonicity: Star graph

Kompel ′makher , Liskovets, 1975

The graph Cay(Symn,T ) is hamiltonian whenever T is a generating set
for Symn consisting of transpositions.

This result has been generalized as follows.

Tchuente, 1982

Let T be a set of transpositions that generate Symn. Then there is a
hamiltonian path in the graph Cay(Symn,T ) joining any permutations of
opposite parity.

Thus, all transposition Cayley graphs are hamiltonian, hence the Star
graph is also hamiltonian.
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Hamiltonicity: Pancake graph

Zaks, 1984

The generating algorithm for permutations from which it follows that
Pn, n > 3, is hamiltonian, i.e. there is a cycle of length n!.

Kanevsky , Feng , 1995

All cycles of length l where 6 6 l 6 n!− 2, or l = n! can embedded in Pn.

Thus, the Pancake graph is also hamiltonian.

Sheu, Tan, Chu, 2006

All cycles of length l where 6 6 l 6 n! can embedded in Pn.
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Hamiltonicity based on the hierarchical structure of the

Pancake graph
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Automorphism group: Star and Pancake graphs

Feng , 2006

The automorphism group of Cay(Symn,T ) with a minimal generating set
is the semiproduct R(Symn) ⊲⊳ Aut(Symn,T ), where R(Symn) is the right
regular representation of Symn,and
Aut(Symn,T ) = {α ∈ Aut(Symn)|T

α = T}.

Feng’s result gives the automorphism group for the Star graph.

Deng , Zhang , 2012

The automorphism group of the Pancake graph Pn, n > 5, is the left
regular representation of the symmetric group Symn.
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Perfect codes: Star and Pancake graphs

Perfect codes

An independent set D of vertices in a graph Γ is an efficient dominating
set (or perfect code) if each vertex not in D is adjacent to exactly one
vertex in D.

Dejter , Serra, 2002

Existence of efficient dominating sets in Cayley graphs having hierarchical
structure (hypercube, Star graph, Pancake graph).

Konstantinova, Savin, 2010, 2012

There are n efficient dominating sets in Γn ∈ {Sn,Pn} given by
Dk = {[k π2 . . . πn], πj ∈ {1, . . . , n}\{k} : 2 6 j 6 n}, 1 6 k 6 n.
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Diameter: Star graph

Akers, Krishnamurthy , 1989

The diameter of the Star graph is ⌊3(n−1)
2 ⌋. Moreover,

diam(Sn) =

{

3(n−1)
2 , if n odd,

1 + 3(n−2)
2 , if n > 3 even.

Remark: The Star graph has a simple cycle structure (only even cycles)
which allows to get its diameter.
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Diameter: Pancake graph and Pancake problem

(Goodman, 1975)

”The chef in our place is sloppy, and when he prepares a stack of
pancakes they come out all different sizes. Therefore, when I
deliver them to a customer, on the way to the table I rearrange
them (so that the smallest winds up on top, and so on, down to
the largest on the bottom) by grabbing several pancakes from
the top and flips them over, repeating this (varying the number I
flip) as many times as necessary. If there are n pancakes, what is
the maximum number of flips (as a function of n) that I will ever
have to use to rearrange them?”
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Diameter: Pancake graph and Pancake problem

A stack of n pancakes is represented by a permutation on n elements and
the problem is to find the least number of flips (prefix–reversals) needed to
transform a permutation into the identity permutation.

This number of flips corresponds to the diameter D of the Pancake graph

The table of diameters for Pn, 4 6 n 6 19, is presented below:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22

Pancake problem: bounds

1979, Gates,Papadimitriou: 17n/16 6 D 6 (5n + 5)/3
1997, Heydari ,Sudborough: 15n/14 6 D
2007, Sudborough, etc .: D 6 18n/11
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Applications: molecular biology

Genomes are presented by a permutations:

Ala Arg Asp Asn
1 2 3

AlaArgAsp Asn

r3

4

43 2 1

The evolutionary distance: Palmer, Herbon, 1986

The prefix–reversal distance of two permutations is the least number d of
prefix–reversals needed to transform one permutation into another:

X : (1, 5, 2, 3, 4) −→ Y : (2, 5, 1, 3, 4)

Sorting permutations by reversal (prefix–reversals): NP–hard

Find, for a given permutation π, a minimal sequence d of reversals
(prefix–reversals) that transforms π to the identity permutation I .
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Applications: interconnection networks

1986, SIAM International Conference on Parallel Processing: ”to use
Cayley graphs as a tool to construct vertex–symmetric interconnection
networks.”

Interconnection networks are modeled by graphs: the vertices correspond
to processing elements, memory modules, or just switches; the edges
correspond to communication lines.

Advantages in using Cayley graphs as network models:

• vertex–transitivity (the same routing algorithm is used for each v);
• hierarchical structure (allows recursive constructions);
• high fault tolerance (the maximum number of vertices that need to be
removed and still have the graph remain connected);
• small degree and diameter.

Star graphs ≡ Star networks, Pancake graphs ≡ Pancake networks

Elena Konstantinova Two graphs: problems and results Kunming-2013 18 / 20



Colouring: Cayley graphs

The smallest number of colors needed to color a graph (such that no two
adjacent vertices share the same color) is called its chromatic number.

Babai , 1978

Every group has a Cayley graph of chromatic number 6 ω; for solvable
groups the minimum chromatic number is 6 3.

Graham,Grötshel , Lov ász(Eds.), ”Handbook of Combinatorics”,1995

Every finite group has a Cayley graph of chromatic number 6 4.

Remark: This is a consequence of the fact that every finite simple group is
generated by 6 2 elements.
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Colouring: Star and Pancake graphs

Chromatic number of the Star graph

λ(Sn) = 2

Chromatic number of the Pancake graph

λ(Pn) =?

Pancake graph: known facts

λ(P2) = λ(P3) = 2, λ(P4) = λ(P5) = 3, 3 6 λ(P6) 6 4.
λ(Pn) 6 n− 2 for any n > 4.

Pancake graph: conjecture

λ(Pn) = 3 for some n > 5.
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