
Greedy approach to investigating

cyclic structure of Cayley graphs

Elena Konstantinova

Sobolev Institute of Mathematics, Novosibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

The 91st KPPY Combinatorics Workshop

Busan, South Korea

January 11�12, 2019



Outline of the talk

The main goal

To overview recent results on greedy approach with emphasizing on ways of
constructing (hamiltonian) cycles in Cayley graphs.

Content

� Hamiltonian problem:
- graphs
- Cayley graphs

� Greedy approach:
- constructing hamiltonian cycles
- constructing non-hamiltonian cycles

� Cyclic coverings and algebraic approach

� Open problems
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Hamiltonicity of graphs

Hamiltonian graphs

Let Γ = (V ,E ) be a connected graph where V = {v1, v2, . . . , vn}.
A Hamiltonian cycle in Γ is a spanning cycle (v1, v2, . . . , vn, v1).
A Hamiltonian path in Γ is a path (v1, v2, . . . , vn).
A graph is Hamiltonian if it contains a Hamiltonian cycle.
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Hamiltonicity of graphs

Hamiltonian problem, 1850s

Hamiltonicity problem, that is to check whether a graph is Hamiltonian,
was stated by Sir William Rowan Hamilton.

NP�completeness, 1979

Testing whether a graph is Hamiltonian is an NP-complete problem.
[M.R. Garey, D.S. Johnson, Computers and intractability. A quide to the
theory of NP�completeness].

Applications

Hamiltonian paths and cycles naturally arise in:
• computer science
• word-hyperbolic groups and automatic groups
• combinatorial designs
• combinatorial optimization (travelling salesman problem)
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Hamiltonicity of vertex-transitive graphs:
Lov�asz conjecture, 1970

There is a famous Hamiltonicity problem for vertex�transitive graphs which
was posed by L�aszl�o Lov�asz in 1970 and well�known as follows.

Question

Does every connected vertex�transitive graph with more than two vertices
have a Hamiltonian path?

To be more precisely he stated a research problem asking how one can

� ... construct a �nite connected undirected graph which is

symmetric and has no simple path containing all the vertices. A

graph is symmetric if for any two vertices x and y it has an

automorphism mapping x onto y .�

However, traditionally the problem is formulated in the positive and
considered as the Lov�asz conjecture that every vertex�transitive graph has
a Hamiltonian path.

Elena Konstantinova Greedy approach to Cayley graphs 91-KPPY-Busan-2019 5 / 28



Hamiltonicity of vertex-transitive graphs:
Lov�asz conjecture vs Babai conjecture

L. Lov�asz conjecture, 1970

Every connected vertex�transitive graph has a Hamiltonian path.

L. Babai conjecture, 1996

For some ε > o, there exist in�nitely many connected vertex�transitive
graphs (even Cayley graphs) Γ without cycles of length > (1− ε)|V (Γ)|.

A step forward in Lov�asz conjecture was made recently.

S. Du, K. Kutnar, D. Marusic, 2018

With the exception of the Petersen graph, a connected vertex-transitive
graph of order pq, where p and q are primes, contains a Hamiltonian cycle.
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Hamiltonicity of Cayley graphs: folk conjecture

There are only 4 vertex�transitive (not Cayley) graphs which do not have a
Hamiltonian cycle, and have a Hamiltonian path:
• Petersen graph
• Coxeter graph
• two graphs obtained from the graphs above by replacing each vertex
with a triangle and joining the vertices in a natural way
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Conjecture on Cayley graphs

Every connected Cayley graph on a �nite group has a Hamiltonian cycle.
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Hamiltonicity of Cayley graphs: positive answers

D. Maru�si�c, 1983

A Cayley graph Γ = Cay(G , S) of an abelian group G with at least three
vertices contains a Hamiltonian cycle.

B. Alspach, C.-Q. Zhang, 1989

Every cubic Cayley graph of a dihedral group is Hamiltonian.

A rare positive result for all �nite groups was obtained in 2009.

I. Pak, R. Radoi�ci�c, 2009

Every �nite group G of size |G | > 3 has a generating set S of size
|S | 6 log2 |G | such that the corresponding Cayley graph Γ = Cay(G ,S)
has a Hamiltonian cycle.
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Hamiltonicity of Cayley graphs: positive answers

There are also some results for Cayley graphs on the symmetric group
Symn generated by transpositions.

V.L. Kompel'makher, V.A. Liskovets, Successive generation
of permutations by means of a transposition basis, 1975

The graph Cay(Symn,S) is Hamiltonian whenever S is a generating set for
Symn consisting of transpositions.

This result has been generalized as follows.

M. Tchuente, Generation of permutations by graphical
exchanges, 1982

Let S be a set of transpositions that generate Symn. Then there is a
Hamiltonian path in the graph Cay(Symn,S) joining any permutations of
opposite parity.

Thus, all transposition Cayley graphs are Hamiltonian.
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Greedy approach

A greedy algorithm

A greedy algorithm is an algorithmic paradigm that follows the problem
solving heuristic of making the locally optimal choice at each stage with
the hope of �nding a global optimum.

In many problems, a greedy strategy does not in general produce an optimal
solution, but nonetheless a greedy heuristic may yield locally optimal
solutions that approximate a global optimal solution in a reasonable time.

Example: Traveling Salesman Problem

A greedy strategy:
At each stage visit an unvisited city nearest to the current city

In mathematical optimization, greedy algorithms solve combinatorial
problems having the properties of matroids.
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Greedy generation of permutations

A. Williams, J. Sawada, Greedy pancake �ipping (2013)

Take a stack of pancakes, numbered 1, 2, . . . , n by increasing diameter, and
repeat the following:

Flip the maximum number of topmost pancakes that gives a new stack.

[1234] [4321] [2341] [1432] [3412] [2143] [4123] [3214]

[2314] [4132] [3142] [2413] [1423] [3241] [4231] [1324]

[3124] [4213] [1243] [3421] [2431] [1342] [4312] [2134]
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Pre�x�reversal Gray codes

Each '�ip' is formally known as pre�x�reversal.

The Pancake graph Pn = Cay(Symn,PR), n > 2

is the Cayley graph on the symmetric group Symn with generating set
{ri ∈ Symn, 1 6 i < n}, where ri reverses the order of any substring
[1, i ], 1 < i 6 n, of a permutation π when multiplied on the right, i.e.,
[π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn].

Williams' pre�x�reversal Gray code: rn rn−1 rn−2, . . . , r3, r2

Flip the maximum number of topmost pancakes that gives a new stack.

Zaks' (1984) pre�x�reversal Gray code: r2 r3, . . . , rn−2 rn−1 rn

Flip the minimum number of topmost pancakes that gives a new stack.
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Gray codes: generating permutations

V.L. Kompel'makher, V.A. Liskovets, Successive generation
of permutations by means of a transposition basis, 1975

Q: Is it possible to arrange permutations of a given length so that each
permutation is obtained from the previous one by a transposition?
A: YES

S. Zaks, A new algorithm for generation of permutations,
1984

In Zaks' algorithm each successive permutation is generated
by reversing a su�x of the preceding permutation.

ryjStart with In = [12 . . . n] and in each step reverse a certain su�x. Let
ζn is the sequence of sizes of these su�xes de�ned by recursively as follows:

ζ2 = 2
ζn = (ζn−1 n)n−1 ζn−1, n > 2,

where a sequence is written as a concatenation of its elements.
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Zaks' algorithm: examples

If n = 2 then ζ2 = 2 and we have:

[12] [21]

If n = 3 then ζ3 = 23232 and we have:

[123] [231] [312]

[132] [213] [321]

If n = 4 then ζ4 = 23232423232423232423232 and we have:

[1234] [2341] [3412] [4123]

[1243] [2314] [3421] [4132]

[1342] [2413] [3124] [4231]

[1324] [2431] [3142] [4213]

[1423] [2134] [3241] [4312]

[1432] [2143] [3214] [4321]
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Greedy hamiltonian cycles in the Pancake graph

Greedy approach for constructing greedy cycles

Consider a sequence GP = (rm1 , rm2 , . . . , rmk
) of distinct k 6 n − 1

pre�x�reversals rmj , 2 6 mj 6 n, from the generating set of Pn.

A greedy cycle is formed by consecutive application of the leftmost suitable
pre�x�reversal from GP which is called a greedy sequence of length k in
this setting.

Known greedy sequences for the Pancake graph

Sawada-Williams' sequence: (rn, rn−1, . . . , r3, r2) (2013)
Zaks' seguence: (r2, r3, . . . , rn−1, rn) (1984)
K-Medvedev' sequences: (rn, rn−1, . . . , r2, r3), (r3, r2, . . . , rn−1, rn) (2016)
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Example: greedy hamiltonian cycles in P4

(r4, r3, r2)-greedy cycle (r4, r2, r3)-greedy cycle
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Example: (r4, r3, r2)-greedy hamiltonian cycle in P4
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Are there other greedy sequences in Pn?

Results of the numerical experiment

Index of Pn P5 P6 P7 P8 P9 P10 P11

# of all possible GP 24 120 720 5040 40320 9! 10!

# of GP with proper length 6 16 20 76 162 456 846

None of the obtained sequences were Hamiltonian.

EK, A.N. Medvedev, 2016

Suppose HG
n is a greedy Hamiltonian cycle in the Pn, n > 4, with the

GP = (rm1 , rm2 , . . . , rmk
), k 6 n − 1. Then the length of HG

n satis�es

|HG
n | = n! =

1

2k−2

k−1∏
i=1

li ,

where li is the length of a cycle of form Cli = (rmi rmi+1)ki , 2 6 i 6 k .
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Independent cycles in Pn

EK, A.N. Medvedev, 2016

The Pancake graph Pn, n > 4, contains the maximal set of n!
` independent

`�cycles of the canonical form

C` = (rn rm)k , (1)

where ` = 2 k , 2 6 m 6 n − 1 and

k =


O(1) if m 6 bn2c;
O(n) if m > bn2c and n ≡ 0 (mod n −m);
O(n2) else.

(2)

The cycles presented in Theorem have no chords.
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Greedy hamiltonian cycles

General question

Are there greedy hamiltonian cycles in other Cayley graphs?

Question

Are there greedy hamiltonian cycles in the Star graphs?

Question

Are there greedy hamiltonian cycles in the Bubble-Sort graphs?
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Star graphs: de�nition

The Star graph Sn = Cay(Symn,T ), n > 2

is the Cayley graph on the symmetric group Symn of permutations
π = [π1π2...πi ...πn] with the generating set T of all transpositions
ti = (1 i) swapping the 1st and ith elements of a permutation π.

Properties of the Star graph

connected bipartite (n − 1)�regular graph of order n! and diameter

diam(Sn) = b3(n−1)
2 c (S. B. Akers, B. Krishnamurthy, 1989)

vertex-transitive and edge-transitive

contains hamiltonian cycles (V. Kompel'makher, V. Liskovets, 1975,
P. Slater, 1978)

it does contain even `�cycles where ` = 6, 8, . . . , n!

has integral spectrum
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Example: is (t2,t3,t4) a greedy sequence in S4?

[1234] [2134] [3124] [1324] [2314] [3214]

[4213] [2413] [1423] [4123] [2143] [1243]

[3241] [2341] [4321] [3421] [2431] [4231]

-t2 -t3 -t2 -t3 -t2 -t4

-t2 -t3 -t2 -t3 -t2 -t4

-t2 -t3 -t2 -t3 -t2
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Greedy cycles in the Star graphs

Theorem (D. Gostevsky, EK, 2018)

In the Star graph Sn, n > 3, any greedy sequence GS of length k , where
2 6 k 6 n − 1, forms a GS-greedy cycle of length 2 · 3k−1.

Proof

If n = 3, then S3 ∼= C6, hence GS3 = (t2, t3) is a greedy sequence
generating six permutations as follows:

GS3 : [123] [213] [312] [132] [231] [321],-t2 -t3 -t2 -t3 -t2

which obviously forms a cycle of length 2 · 32−1 = 6.
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Greedy cycles in the Star graphs

Theorem (D. Gostevsky, EK, 2018)

In the Star graph Sn, n > 3, any greedy sequence GS of length k , where
2 6 k 6 n − 1, forms a GS-greedy cycle of length 2 · 3k−1.

Proof

If n = 4, then GS4 = (t2, t3, t4) forms a greedy cycle of length
6 · 3 = 2 · 33−1 = 18 in S4:

[1234] [2134] [3124] [1324] [2314] [3214]

[4213] [2413] [1423] [4123] [2143] [1243]

[3241] [2341] [4321] [3421] [2431] [4231].
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Greedy cycles in the Star graphs

Theorem (D. Gostevsky, EK, 2018)

In the Star graph Sn, n > 3, any greedy sequence GS of length k , where
2 6 k 6 n − 1, forms a GS-greedy cycle of length 2 · 3k−1.

Proof

Consider a sequence GSn = (t2, t3, t4, . . . , tn)

[1 2 3 . . . n − 1 n] [n − 1 2 3 . . . 1 n]-
GSn−1 -tn

[n 2 3 . . . 1 n − 1] [1 2 3 . . . n n − 1]-
GSn−1 -tn

[n − 1 2 3 . . . n 1] [n 2 3 . . . n − 1 1]-
GSn−1

Corollary

There are no greedy hamiltonian cycles in Sn for n > 4.
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Greedy cyclic covering in the Star graphs

Let F = {GSk = (t2, t3, . . . , tk), 3 6 k 6 n} be a family of greedy
sequences.

Theorem (D. Gostevsky, EK, 2017)

In the Star graph Sn, n > 3, there exists a maximal set of independent
cycles formed by greedy sequences from the family F consisting of the
following cycles:

(1) one cycle of length 2 · 3n−2, and

(2) n − 3 cycles of length 2 · 3n−3 when n > 4, and

(3) Nm cycles of length 2 · 3n−m−2 for all 2 6 m 6 n − 3 when n > 5,
where

Nm =

(
m∏
l=2

(n − l + 2)

)
· (n −m − 2).
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Example: GS-greedy cyclic covering of S4

Independent greedy 18- and 6-cycles are formed by
greedy sequences GS4 = (t2, t3, t4) and GS3 = (t2, t3).
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Algebraic approach: to be continuied...

From cycle covering to hamiltonian cycle: idea

� - �nd cycle coverings in a graph
� - use algebraic operations on cycle coverings to get a hamiltonian cycle

The technique of creating large cycles from the symmetric di�erence of
small cycles has been used by change ringers for hundreds of years
[R. Duckworth and F. Stedman, Tintinnalogia, Self-published, 1667 (The
Art of Ringing)].

Thanks for attention!
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