Greedy approach to investigating cyclic structure of Cayley graphs

Elena Konstantinova

Sobolev Institute of Mathematics, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia

The 91st KPPY Combinatorics Workshop

$$
\begin{aligned}
& \text { Busan, South Korea } \\
& \text { January 11-12, } 2019
\end{aligned}
$$

Outline of the talk

The main goal

To overview recent results on greedy approach with emphasizing on ways of constructing (hamiltonian) cycles in Cayley graphs.

Outline of the talk

The main goal

To overview recent results on greedy approach with emphasizing on ways of constructing (hamiltonian) cycles in Cayley graphs.

Content

\diamond Hamiltonian problem:

- graphs
- Cayley graphs
\diamond Greedy approach:
- constructing hamiltonian cycles
- constructing non-hamiltonian cycles
\diamond Cyclic coverings and algebraic approach
\diamond Open problems

Hamiltonicity of graphs

Hamiltonian graphs

Let $\Gamma=(V, E)$ be a connected graph where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
A Hamiltonian cycle in Γ is a spanning cycle $\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$.
A Hamiltonian path in Γ is a path $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.
A graph is Hamiltonian if it contains a Hamiltonian cycle.

Hamiltonicity of graphs

Hamiltonian problem, 1850s

Hamiltonicity problem, that is to check whether a graph is Hamiltonian, was stated by Sir William Rowan Hamilton.

Hamiltonicity of graphs

Hamiltonian problem, 1850s

Hamiltonicity problem, that is to check whether a graph is Hamiltonian, was stated by Sir William Rowan Hamilton.

NP-completeness, 1979

Testing whether a graph is Hamiltonian is an NP-complete problem. [M.R. Garey, D.S. Johnson, Computers and intractability. A quide to the theory of NP-completeness].

Hamiltonicity of graphs

Hamiltonian problem, 1850s

Hamiltonicity problem, that is to check whether a graph is Hamiltonian, was stated by Sir William Rowan Hamilton.

NP-completeness, 1979

Testing whether a graph is Hamiltonian is an NP-complete problem. [M.R. Garey, D.S. Johnson, Computers and intractability. A quide to the theory of NP-completeness].

Applications

Hamiltonian paths and cycles naturally arise in:

- computer science
- word-hyperbolic groups and automatic groups
- combinatorial designs
- combinatorial optimization (travelling salesman problem)

Hamiltonicity of vertex-transitive graphs: Lovász conjecture, 1970

There is a famous Hamiltonicity problem for vertex-transitive graphs which was posed by László Lovász in 1970 and well-known as follows.

Question

Does every connected vertex-transitive graph with more than two vertices have a Hamiltonian path?

To be more precisely he stated a research problem asking how one can " ... construct a finite connected undirected graph which is symmetric and has no simple path containing all the vertices. A graph is symmetric if for any two vertices x and y it has an automorphism mapping x onto y."

However, traditionally the problem is formulated in the positive and considered as the Lovász conjecture that every vertex-transitive graph has a Hamiltonian path.

Hamiltonicity of vertex-transitive graphs: Lovász conjecture vs Babai conjecture

L. Lovász conjecture, 1970

Every connected vertex-transitive graph has a Hamiltonian path.

Hamiltonicity of vertex-transitive graphs: Lovász conjecture vs Babai conjecture

L. Lovász conjecture, 1970

Every connected vertex-transitive graph has a Hamiltonian path.

L. Babai conjecture, 1996

For some $\varepsilon>0$, there exist infinitely many connected vertex-transitive graphs (even Cayley graphs) 「 without cycles of length $\geqslant(1-\varepsilon)|V(\Gamma)|$.

Hamiltonicity of vertex-transitive graphs: Lovász conjecture vs Babai conjecture

L. Lovász conjecture, 1970

Every connected vertex-transitive graph has a Hamiltonian path.

L. Babai conjecture, 1996

For some $\varepsilon>0$, there exist infinitely many connected vertex-transitive graphs (even Cayley graphs) 「 without cycles of length $\geqslant(1-\varepsilon)|V(\Gamma)|$.

A step forward in Lovász conjecture was made recently.
S. Du, K. Kutnar, D. Marusic, 2018

With the exception of the Petersen graph, a connected vertex-transitive graph of order $p q$, where p and q are primes, contains a Hamiltonian cycle.

Hamiltonicity of Cayley graphs: folk conjecture

There are only 4 vertex-transitive (not Cayley) graphs which do not have a Hamiltonian cycle, and have a Hamiltonian path:

- Petersen graph
- Coxeter graph
- two graphs obtained from the graphs above by replacing each vertex with a triangle and joining the vertices in a natural way

Conjecture on Cayley graphs

Every connected Cayley graph on a finite group has a Hamiltonian cycle.

Hamiltonicity of Cayley graphs: positive answers

D. Marušič, 1983

A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ of an abelian group G with at least three vertices contains a Hamiltonian cycle.

Hamiltonicity of Cayley graphs: positive answers

D. Marušič, 1983

A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ of an abelian group G with at least three vertices contains a Hamiltonian cycle.

B. Alspach, C.-Q. Zhang, 1989

Every cubic Cayley graph of a dihedral group is Hamiltonian.

Hamiltonicity of Cayley graphs: positive answers

D. Marušič, 1983

A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ of an abelian group G with at least three vertices contains a Hamiltonian cycle.

B. Alspach, C.-Q. Zhang, 1989

Every cubic Cayley graph of a dihedral group is Hamiltonian.

A rare positive result for all finite groups was obtained in 2009.

Hamiltonicity of Cayley graphs: positive answers

D. Marušič, 1983

A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ of an abelian group G with at least three vertices contains a Hamiltonian cycle.

B. Alspach, C.-Q. Zhang, 1989

Every cubic Cayley graph of a dihedral group is Hamiltonian.

A rare positive result for all finite groups was obtained in 2009.

I. Pak, R. Radoičić, 2009

Every finite group G of size $|G| \geqslant 3$ has a generating set S of size $|S| \leqslant \log _{2}|G|$ such that the corresponding Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ has a Hamiltonian cycle.

Hamiltonicity of Cayley graphs: positive answers

There are also some results for Cayley graphs on the symmetric group Sym $_{n}$ generated by transpositions.

Hamiltonicity of Cayley graphs: positive answers

There are also some results for Cayley graphs on the symmetric group Sym $_{n}$ generated by transpositions.
V.L. Kompel'makher, V.A. Liskovets, Successive generation of permutations by means of a transposition basis, 1975
The graph Cay $\left(S y m_{n}, S\right)$ is Hamiltonian whenever S is a generating set for Sym $_{n}$ consisting of transpositions.

Hamiltonicity of Cayley graphs: positive answers

There are also some results for Cayley graphs on the symmetric group Sym $_{n}$ generated by transpositions.
V.L. Kompel'makher, V.A. Liskovets, Successive generation of permutations by means of a transposition basis, 1975
The graph Cay $\left(S y m_{n}, S\right)$ is Hamiltonian whenever S is a generating set for Sym $_{n}$ consisting of transpositions.

This result has been generalized as follows.

Hamiltonicity of Cayley graphs: positive answers

There are also some results for Cayley graphs on the symmetric group Sym_{n} generated by transpositions.
V.L. Kompel'makher, V.A. Liskovets, Successive generation of permutations by means of a transposition basis, 1975
The graph Cay $\left(S y m_{n}, S\right)$ is Hamiltonian whenever S is a generating set for Sym_{n} consisting of transpositions.

This result has been generalized as follows.
> M. Tchuente, Generation of permutations by graphical exchanges, 1982

Let S be a set of transpositions that generate $S_{y m} m_{n}$. Then there is a Hamiltonian path in the graph Cay $\left(S y m_{n}, S\right)$ joining any permutations of opposite parity.

Thus, all transposition Cayley graphs are Hamiltonian.

Greedy approach

A greedy algorithm

A greedy algorithm is an algorithmic paradigm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum.

Greedy approach

A greedy algorithm

A greedy algorithm is an algorithmic paradigm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum.

In many problems, a greedy strategy does not in general produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions that approximate a global optimal solution in a reasonable time.

Greedy approach

A greedy algorithm

A greedy algorithm is an algorithmic paradigm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum.

In many problems, a greedy strategy does not in general produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions that approximate a global optimal solution in a reasonable time.

Example: Traveling Salesman Problem

A greedy strategy:
At each stage visit an unvisited city nearest to the current city

Greedy approach

A greedy algorithm

A greedy algorithm is an algorithmic paradigm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum.

In many problems, a greedy strategy does not in general produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions that approximate a global optimal solution in a reasonable time.

Example: Traveling Salesman Problem

A greedy strategy:
At each stage visit an unvisited city nearest to the current city

In mathematical optimization, greedy algorithms solve combinatorial problems having the properties of matroids.

Greedy generation of permutations

A. Williams, J. Sawada, Greedy pancake flipping (2013)

Take a stack of pancakes, numbered $1,2, \ldots, n$ by increasing diameter, and repeat the following:
Flip the maximum number of topmost pancakes that gives a new stack.

Greedy generation of permutations

A. Williams, J. Sawada, Greedy pancake flipping (2013)

Take a stack of pancakes, numbered $1,2, \ldots, n$ by increasing diameter, and repeat the following:
Flip the maximum number of topmost pancakes that gives a new stack.

$$
\begin{aligned}
& {[1234][4321][2341][1432][3412][2143][4123][3214]} \\
& {[2314][4132][3142][2413][1423][3241][4231][1324]} \\
& {[3124][4213][1243][3421][2431][1342][4312][2134]}
\end{aligned}
$$

Prefix-reversal Gray codes

Each 'flip' is formally known as prefix-reversal.

Prefix-reversal Gray codes

Each 'flip' is formally known as prefix-reversal.

The Pancake graph $P_{n}=\operatorname{Cay}\left(S_{y} m_{n}, P R\right), n \geqslant 2$

is the Cayley graph on the symmetric group Sym ${ }_{n}$ with generating set $\left\{r_{i} \in \operatorname{Sym}_{n}, 1 \leqslant i<n\right\}$, where r_{i} reverses the order of any substring $[1, i], 1<i \leqslant n$, of a permutation π when multiplied on the right, i.e., $\left[\pi_{1} \ldots \pi_{i} \pi_{i+1} \ldots \pi_{n}\right] r_{i}=\left[\pi_{i} \ldots \pi_{1} \pi_{i+1} \ldots \pi_{n}\right]$.

Prefix-reversal Gray codes

Each 'flip' is formally known as prefix-reversal.

The Pancake graph $P_{n}=\operatorname{Cay}\left(\operatorname{Sym}_{n}, P R\right), n \geqslant 2$

is the Cayley graph on the symmetric group Sym ${ }_{n}$ with generating set $\left\{r_{i} \in \operatorname{Sym}_{n}, 1 \leqslant i<n\right\}$, where r_{i} reverses the order of any substring $[1, i], 1<i \leqslant n$, of a permutation π when multiplied on the right, i.e., $\left[\pi_{1} \ldots \pi_{i} \pi_{i+1} \ldots \pi_{n}\right] r_{i}=\left[\pi_{i} \ldots \pi_{1} \pi_{i+1} \ldots \pi_{n}\right]$.

Williams' prefix-reversal Gray code: $r_{n} r_{n-1} r_{n-2}, \ldots, r_{3}, r_{2}$

Flip the maximum number of topmost pancakes that gives a new stack.

Zaks' (1984) prefix-reversal Gray code: $r_{2} r_{3}, \ldots, r_{n-2} r_{n-1} r_{n}$

Flip the minimum number of topmost pancakes that gives a new stack.

Gray codes: generating permutations

V.L. Kompel'makher, V.A. Liskovets, Successive generation of permutations by means of a transposition basis, 1975
Q: Is it possible to arrange permutations of a given length so that each permutation is obtained from the previous one by a transposition? A: YES

Gray codes: generating permutations

V.L. Kompel'makher, V.A. Liskovets, Successive generation of permutations by means of a transposition basis, 1975
Q: Is it possible to arrange permutations of a given length so that each permutation is obtained from the previous one by a transposition? A: YES

S. Zaks, A new algorithm for generation of permutations, 1984

In Zaks' algorithm each successive permutation is generated by reversing a suffix of the preceding permutation.

Gray codes: generating permutations

V.L. Kompel'makher, V.A. Liskovets, Successive generation

 of permutations by means of a transposition basis, 1975Q: Is it possible to arrange permutations of a given length so that each permutation is obtained from the previous one by a transposition? A: YES

S. Zaks, A new algorithm for generation of permutations, 1984

In Zaks' algorithm each successive permutation is generated by reversing a suffix of the preceding permutation. ryjStart with $I_{n}=[12 \ldots n]$ and in each step reverse a certain suffix. Let ζ_{n} is the sequence of sizes of these suffixes defined by recursively as follows:

$$
\begin{aligned}
& \zeta_{2}=2 \\
& \zeta_{n}=\left(\zeta_{n-1} n\right)^{n-1} \zeta_{n-1}, n>2
\end{aligned}
$$

where a sequence is written as a concatenation of its elements.

Zaks' algorithm: examples

If $n=2$ then $\zeta_{2}=2$ and we have:

$$
[\underline{12]} \quad[21]
$$

If $n=3$ then $\zeta_{3}=23232$ and we have:

$$
\begin{array}{lll}
{[123]} & {[231]} & {[312]} \\
{[\underline{132}]} & {[\underline{213}]} & {[321]}
\end{array}
$$

If $n=4$ then $\zeta_{4}=23232423232423232423232$ and we have:
[1234] [2341] [3412] [4123]
[1243] [2314] [3421] [4132]
[1342] [2413] [3124] [4231]
[1324] [2431] [3142] [4213]
[1423] [2134] [3241] [4312]
[1432] [2143] [3214] [4321]

Greedy hamiltonian cycles in the Pancake graph

Greedy approach for constructing greedy cycles

Consider a sequence $G P=\left(r_{m_{1}}, r_{m_{2}}, \ldots, r_{m_{k}}\right)$ of distinct $k \leqslant n-1$ prefix-reversals $r_{m_{j}}, 2 \leqslant m_{j} \leqslant n$, from the generating set of P_{n}.
A greedy cycle is formed by consecutive application of the leftmost suitable prefix-reversal from GP which is called a greedy sequence of length k in this setting.

Greedy hamiltonian cycles in the Pancake graph

Greedy approach for constructing greedy cycles

Consider a sequence $G P=\left(r_{m_{1}}, r_{m_{2}}, \ldots, r_{m_{k}}\right)$ of distinct $k \leqslant n-1$ prefix-reversals $r_{m_{j}}, 2 \leqslant m_{j} \leqslant n$, from the generating set of P_{n}.
A greedy cycle is formed by consecutive application of the leftmost suitable prefix-reversal from GP which is called a greedy sequence of length k in this setting.

Known greedy sequences for the Pancake graph
Sawada-Williams' sequence: $\left(r_{n}, r_{n-1}, \ldots, r_{3}, r_{2}\right)(2013)$
Zaks' seguence: $\left(r_{2}, r_{3}, \ldots, r_{n-1}, r_{n}\right)(1984)$
K-Medvedev' sequences: $\left(r_{n}, r_{n-1}, \ldots, r_{2}, r_{3}\right),\left(r_{3}, r_{2}, \ldots, r_{n-1}, r_{n}\right)(2016)$

Example: greedy hamiltonian cycles in P_{4}

$\left(r_{4}, r_{3}, r_{2}\right)$-greedy cycle

$\left(r_{4}, r_{2}, r_{3}\right)$-greedy cycle

Example: $\left(r_{4}, r_{3}, r_{2}\right)$-greedy hamiltonian cycle in P_{4}

Are there other greedy sequences in P_{n} ?

Results of the numerical experiment

Index of $\mathbf{P}_{\mathbf{n}}$	P_{5}	P_{6}	P_{7}	P_{8}	P_{9}	P_{10}	P_{11}
\# of all possible GP	24	120	720	5040	40320	$9!$	$10!$
\# of $G P$ with proper length	6	16	20	76	162	456	846

None of the obtained sequences were Hamiltonian.

EK, A.N. Medvedev, 2016

Suppose H_{n}^{G} is a greedy Hamiltonian cycle in the $P_{n}, n \geqslant 4$, with the $G P=\left(r_{m_{1}}, r_{m_{2}}, \ldots, r_{m_{k}}\right), k \leqslant n-1$. Then the length of H_{n}^{G} satisfies

$$
\left|H_{n}^{G}\right|=n!=\frac{1}{2^{k-2}} \prod_{i=1}^{k-1} \iota_{i}
$$

where I_{i} is the length of a cycle of form $C_{l_{i}}=\left(r_{m_{i}} r_{m_{i+1}}\right)^{k_{i}}, 2 \leqslant i \leqslant k$.

Independent cycles in P_{n}

EK, A.N. Medvedev, 2016

The Pancake graph $P_{n}, n \geqslant 4$, contains the maximal set of $\frac{n!}{\ell}$ independent ℓ-cycles of the canonical form

$$
\begin{equation*}
C_{\ell}=\left(r_{n} r_{m}\right)^{k} \tag{1}
\end{equation*}
$$

where $\ell=2 k, 2 \leqslant m \leqslant n-1$ and

$$
k= \begin{cases}O(1) & \text { if } m \leqslant\left\lfloor\frac{n}{2}\right\rfloor ; \tag{2}\\ O(n) & \text { if } m>\left\lfloor\frac{n}{2}\right\rfloor \\ O\left(n^{2}\right) & \text { else. }\end{cases}
$$

The cycles presented in Theorem have no chords.

Greedy hamiltonian cycles

General question

Are there greedy hamiltonian cycles in other Cayley graphs?

Greedy hamiltonian cycles

General question

Are there greedy hamiltonian cycles in other Cayley graphs?

Question

Are there greedy hamiltonian cycles in the Star graphs?

Question

Are there greedy hamiltonian cycles in the Bubble-Sort graphs?

Star graphs: definition

The Star graph $S_{n}=\operatorname{Cay}\left(\operatorname{Sym}_{n}, T\right), n \geqslant 2$

is the Cayley graph on the symmetric group Sym_{n} of permutations $\pi=\left[\pi_{1} \pi_{2} \ldots \pi_{i} \ldots \pi_{n}\right]$ with the generating set T of all transpositions $t_{i}=(1 i)$ swapping the 1 st and i th elements of a permutation π.

Star graphs: definition

The Star graph $S_{n}=\operatorname{Cay}\left(\operatorname{Sym}_{n}, T\right), n \geqslant 2$

is the Cayley graph on the symmetric group Sym_{n} of permutations $\pi=\left[\pi_{1} \pi_{2} \ldots \pi_{i} \ldots \pi_{n}\right]$ with the generating set T of all transpositions $t_{i}=(1 i)$ swapping the 1 st and i th elements of a permutation π.

Properties of the Star graph

- connected bipartite $(n-1)$-regular graph of order n ! and diameter $\operatorname{diam}\left(S_{n}\right)=\left\lfloor\frac{3(n-1)}{2}\right\rfloor$ (S. B. Akers, B. Krishnamurthy, 1989)
- vertex-transitive and edge-transitive
- contains hamiltonian cycles (V. Kompel'makher, V. Liskovets, 1975, P. Slater, 1978)
- it does contain even ℓ-cycles where $\ell=6,8, \ldots, n$!
- has integral spectrum

Example: is $\left(t_{2}, t_{3}, t_{4}\right)$ a greedy sequence in S_{4} ?

Greedy cycles in the Star graphs

Theorem (D. Gostevsky, EK, 2018)

In the Star graph $S_{n}, n \geqslant 3$, any greedy sequence $G S$ of length k, where $2 \leqslant k \leqslant n-1$, forms a GS-greedy cycle of length $2 \cdot 3^{k-1}$.

Greedy cycles in the Star graphs

Theorem (D. Gostevsky, EK, 2018)

In the Star graph $S_{n}, n \geqslant 3$, any greedy sequence $G S$ of length k, where $2 \leqslant k \leqslant n-1$, forms a GS-greedy cycle of length $2 \cdot 3^{k-1}$.

Proof
If $n=3$, then $S_{3} \cong C_{6}$, hence $G S_{3}=\left(t_{2}, t_{3}\right)$ is a greedy sequence generating six permutations as follows:

$$
G S_{3}: \quad[123] \xrightarrow{t_{2}}[213] \xrightarrow{t_{3}}[312] \xrightarrow{t_{2}}[132] \xrightarrow{t_{3}}[231] \xrightarrow{t_{2}}[321],
$$

which obviously forms a cycle of length $2 \cdot 3^{2-1}=6$.

Greedy cycles in the Star graphs

Theorem (D. Gostevsky, EK, 2018)

In the Star graph $S_{n}, n \geqslant 3$, any greedy sequence $G S$ of length k, where $2 \leqslant k \leqslant n-1$, forms a GS-greedy cycle of length $2 \cdot 3^{k-1}$.

Proof

If $n=4$, then $G S_{4}=\left(t_{2}, t_{3}, t_{4}\right)$ forms a greedy cycle of length $6 \cdot 3=2 \cdot 3^{3-1}=18$ in S_{4} :

$$
\begin{aligned}
& {[1234] \xrightarrow{t_{2}}[2134] \xrightarrow{t_{3}}[3124] \xrightarrow{t_{2}}[1324] \xrightarrow{t_{3}}[2314] \xrightarrow{t_{2}}[3214] \xrightarrow{t_{4}}} \\
& {[4213] \xrightarrow{t_{2}}[2413] \xrightarrow{t_{3}}[1423] \xrightarrow{t_{2}}[4123] \xrightarrow{t_{3}}[2143] \xrightarrow{t_{2}}[1243] \xrightarrow{t_{4}}} \\
& {[3241] \xrightarrow{t_{2}}[2341] \xrightarrow{t_{3}}[4321] \xrightarrow{t_{2}}[3421] \xrightarrow{t_{3}}[2431] \xrightarrow{t_{2}}[4231] .}
\end{aligned}
$$

Greedy cycles in the Star graphs

Theorem (D. Gostevsky, EK, 2018)

In the Star graph $S_{n}, n \geqslant 3$, any greedy sequence $G S$ of length k, where $2 \leqslant k \leqslant n-1$, forms a GS-greedy cycle of length $2 \cdot 3^{k-1}$.

Proof
Consider a sequence $G S_{n}=\left(t_{2}, t_{3}, t_{4}, \ldots, t_{n}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 2 & 3 & \ldots & n-1
\end{array}\right] \xrightarrow{G S_{n-1}}\left[\begin{array}{llllll}
n-1 & 2 & 3 & \ldots & 1 & n
\end{array}\right] \xrightarrow{t_{n}}} \\
& {\left[\begin{array}{lllll}
n & 2 & 3 & \ldots & 1
\end{array} n-1\right] \xrightarrow{G S_{n-1}}\left[\begin{array}{llllll}
1 & 2 & 3 & \ldots & n & n-1
\end{array}\right] \xrightarrow{t_{n}}} \\
& {\left[\begin{array}{llllll}
n-1 & 2 & 3 & \ldots & n & 1
\end{array}\right] \xrightarrow{G S_{n-1}}\left[\begin{array}{llllll}
n & 2 & 3 & \ldots & n-1 & 1
\end{array}\right]}
\end{aligned}
$$

Greedy cycles in the Star graphs

Theorem (D. Gostevsky, EK, 2018)

In the Star graph $S_{n}, n \geqslant 3$, any greedy sequence $G S$ of length k, where $2 \leqslant k \leqslant n-1$, forms a GS-greedy cycle of length $2 \cdot 3^{k-1}$.

Proof
Consider a sequence $G S_{n}=\left(t_{2}, t_{3}, t_{4}, \ldots, t_{n}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 2 & 3 & \ldots & n-1
\end{array}\right] \xrightarrow{G S_{n-1}}\left[\begin{array}{llllll}
n-1 & 2 & 3 & \ldots & 1 & n
\end{array}\right] \xrightarrow{t_{n}}} \\
& {\left[\begin{array}{lllll}
n & 2 & 3 & \ldots & 1
\end{array} n-1\right] \xrightarrow{G S_{n-1}}\left[\begin{array}{llllll}
1 & 2 & 3 & \ldots & n & n-1
\end{array}\right] \xrightarrow{t_{n}}} \\
& {\left[\begin{array}{llllll}
n-1 & 2 & 3 & \ldots & n & 1
\end{array}\right] \xrightarrow{G S_{n-1}}\left[\begin{array}{llllll}
n & 2 & 3 & \ldots & n-1 & 1
\end{array}\right]}
\end{aligned}
$$

Corollary

There are no greedy hamiltonian cycles in S_{n} for $n \geqslant 4$.

Greedy cyclic covering in the Star graphs

Let $\mathfrak{F}=\left\{G S_{k}=\left(t_{2}, t_{3}, \ldots, t_{k}\right), 3 \leqslant k \leqslant n\right\}$ be a family of greedy sequences.

Greedy cyclic covering in the Star graphs

Let $\mathfrak{F}=\left\{G S_{k}=\left(t_{2}, t_{3}, \ldots, t_{k}\right), 3 \leqslant k \leqslant n\right\}$ be a family of greedy sequences.

Theorem (D. Gostevsky, EK, 2017)

In the Star graph $S_{n}, n \geqslant 3$, there exists a maximal set of independent cycles formed by greedy sequences from the family \mathfrak{F} consisting of the following cycles:
(1) one cycle of length $2 \cdot 3^{n-2}$, and
(2) $n-3$ cycles of length $2 \cdot 3^{n-3}$ when $n \geqslant 4$, and
(3) N_{m} cycles of length $2 \cdot 3^{n-m-2}$ for all $2 \leqslant m \leqslant n-3$ when $n \geqslant 5$, where

$$
N_{m}=\left(\prod_{l=2}^{m}(n-l+2)\right) \cdot(n-m-2)
$$

Example: $G S$-greedy cyclic covering of S_{4}

Independent greedy 18- and 6-cycles are formed by greedy sequences $G S_{4}=\left(t_{2}, t_{3}, t_{4}\right)$ and $G S_{3}=\left(t_{2}, t_{3}\right)$.

Algebraic approach: to be continuied...

From cycle covering to hamiltonian cycle: idea

\diamond - find cycle coverings in a graph
\diamond - use algebraic operations on cycle coverings to get a hamiltonian cycle

Algebraic approach: to be continuied...

From cycle covering to hamiltonian cycle: idea

\diamond - find cycle coverings in a graph
\diamond - use algebraic operations on cycle coverings to get a hamiltonian cycle

The technique of creating large cycles from the symmetric difference of small cycles has been used by change ringers for hundreds of years [R. Duckworth and F. Stedman, Tintinnalogia, Self-published, 1667 (The Art of Ringing)].

Algebraic approach: to be continuied...

From cycle covering to hamiltonian cycle: idea

\diamond - find cycle coverings in a graph
\diamond - use algebraic operations on cycle coverings to get a hamiltonian cycle

The technique of creating large cycles from the symmetric difference of small cycles has been used by change ringers for hundreds of years [R. Duckworth and F. Stedman, Tintinnalogia, Self-published, 1667 (The Art of Ringing)].

Thanks for attention!

