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Cayley graph: definition

Definition

Let G be a group, and let S ⊂ G be a set of group elements as a set of
generators for a group such that e ̸∈ S and S = S−1. In the Cayley graph
Γ = Cay(G , S) = (V ,E ) vertices correspond to the elements of the group,
i.e. V = G , and edges correspond to the action of the generators, i.e.
E = {{g , gs} : g ∈ G , s ∈ S}.

Properties

By the definition, Cayley graph is an ordinary graph: its edges are not
oriented and it does not contain loops. Moreover:
(i) Γ is a connected regular graph of degree |S |;
(ii) Γ is a vertex–transitive graph.

A graph is vertex-transitive if its automorphism group acts transitively
upon its vertices.
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Cayley graph: historical background

The definition was introduced by A. Cayley in 1878 to explain the concept
of abstract groups which are generated by a set of generators.

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Cayley.html
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Cayley graph: examples

Complete graph

is the Cayley graph for the additive group Zn of integers modulo n whose
generating set is the set of all non–zero elements of Zn.

Example

Let G = Z6 = {0, 1, 2, 3, 4, 5} and S = {1, 2, 3, 4, 5}, then
Γ = Cay(G ,S) ∼= K6.

Circulant

is the Cayley graph Cay(Zn, S) where S ⊂ Zn is an arbitrary generating
set. The most prominent example is the cycle Cn.

Example

Let G = Z6 = {0, 1, 2, 3, 4, 5} and S = {1, 5}, then Γ = Cay(G ,S) ∼= C6.
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Cayley graph: examples

Cayley graph Cay(Z8, {1, 3, 5, 7})

Graphs and Groups, Geometries and GAP (G2G2)
https://conferences.famnit.upr.si/event/13
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Problems on Cayley graphs

Classical problems

classification

enumeration

structural characterization (chromatic properties, independent sets)

isomorphism problem (the computational problem of determining
whether two finite graphs are isomorphic; it is not known to be
solvable in polynomial time nor to be NP-complete)

diameter problem (computing the diameter of an arbitrary Cayley
graph over a set of generators is NP–hard)

Hamiltonian problem (testing whether a graph is Hamiltonian is an
NP-complete problem)

etc.

All the problems above appear whenever Cayley graphs are considered as
models for interconnection networks in computer science.
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Applications in Computer science

SIAM International Conference on Parallel Processing, 1986

it was suggested to use Cayley graphs as a tool to construct
vertex–symmetric interconnection networks

Interconnection networks are modelled by graphs: the vertices correspond
to processing elements, memory modules, or just switches; the edges
correspond to communication lines.

Advantages in using Cayley graphs as network models

vertex–transitivity (the same routing algorithm is used for each vertex)

edge–transitivity (every edge in the graph looks the same)

hierarchical structure (allows recursive constructions)

high fault tolerance (the maximum number of vertices that need to
be removed and still have the graph remain connected)

small degree and diameter
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Some problems in Computer Science

Constructing Gray codes as checking hamiltonicity (related to
generating combinatorial objects and sorting smth by smth)

Structural chracterization of networks (cycles, independent sets,
chromatic properties)

Spectral characterizion of integral networks (as supporting the
so-called perfect state transfer)
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Gray codes and Hamiltonicity of Cayley graphs

Gray code [F. Gray, 1953, U.S. Patent 2,632,058]

The reflected binary code, also known as Gray code, is a binary numeral
system where two successive values differ in only one bit.

Examples

n = 2: 00 01 | 11 10

n = 3: 000 001 011 010 | 110 111 101 100

RBC is associated with Hamiltonian cycles of Hypercube graphs
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Gray codes and Hamiltonicity of Cayley graphs

Hypercube graphs are Cayley graphs

Hn = Cay(Zn
2, S), where S = {(0, . . . , 0︸ ︷︷ ︸

i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1

), 0 ⩽ i ⩽ n − 1}.

Folk conjecture,1970

Every Cayley graph on a finite group has a Hamiltonian cycle.

Gray codes: generating combinatorial objects

Now the term Gray code refers to
minimal change order of combinatorial objects.

D.E. Knuth, The Art of Computer Programming, Vol.4, 2010

Gray codes are related to
efficient algorithms for exhaustively generating combinatorial objects.

(tuples, permutations, combinations, partitions, trees)

Elena Konstantinova Some problems on Cayley graphs 07-10-2022 11 / 44



Greedy Pancake Gray codes: generating permutations

A. Williams, J. Sawada, Greedy pancake flipping, 2013

Take a stack of pancakes, numbered 1, 2, ..., n by increasing diameter, and
repeat the following:

Flip the maximum number of topmost pancakes that gives a new stack.

Greedy Pancake Gray code over Sym4:

[1234], [4321], [2341], [1432], [3412], [2143], [4123], [3214],

[2314], [4132], [3142], [2413], [1423], [3241], [4231], [1324],

[3124], [4213], [1243], [3421], [2431], [1342], [4312], [2134].
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Background: Pancake problem (Goodman, 1975)

The chef in our place is sloppy, and when he prepares a stack
of pancakes they come out all different sizes. Therefore, when I
deliver them to a customer, on the way to the table I rearrange
them (so that the smallest winds up on top, and so on, down to
the largest on the bottom) by grabbing several pancakes from the
top and flips them over, repeating this (varying the number I flip)
as many times as necessary. If there are n pancakes, what is the
maximum number of flips (as a function of n) that I will ever have
to use to rearrange them?
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Pancake problem and Pancake graph

Pancake problem

A stack of n pancakes is represented by a permutation on n elements and
the problem is to find the least number of flips (prefix–reversals) needed to
transform a permutation into the identity permutation. This number of
flips corresponds to the diameter D of the Pancake graph.

Pancake graph

Pn is the Cayley graph on the symmetric group Symn with generating set
{ri ∈ Symn, 1 ⩽ i < n}, where ri is a permutation reversing the order of
any substring [1, i ], 1 < i ⩽ n, of a permutation π when multiplied on the
right, i.e., [π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn].

The table of diameters D for Pn, 4 ⩽ n ⩽ 19, is presented below:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22
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Pancake graphs: good properties to be Networks

Known bounds on diameter:

1979, Gates,Papadimitriou: 17n/16 ⩽ D ⩽ (5n + 5)/3
1997, Heydari , Sudborough: 15n/14 ⩽ D
2007, Sudborough, etc .: D ⩽ 18n/11

The Pancake graph is Hamiltonian:

All cycles of length ℓ, where 6 ⩽ ℓ ⩽ n!, can be embedded in the Pancake
graph Pn, n ⩾ 3, but there are no cycles of length 3, 4 or 5.

Cubic Pancake graphs: Pancake Networks

The cubic Pancake graphs are defined as Cayley graphs over the
symmetric group Symn with generating set of three prefix-reversals.

In [J. Sawada, A. Williams, Successor rules for flipping pancakes and burnt
pancakes, Theoretical Computer Science, 609 (2016) 60–75] these graphs
are called Pancake networks.
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Conjectures/open problems on Pancake networks

Sawada-Williams Conjecture 1, 2016

Cay(Symn, {rn, rn−1, rn−2}) is hamiltonian.

Computational results confirm this conjecture for small n = 5, 6, 7, 8.

Open Problem 1

To characterize all generating sets of cubic Pancake networks and check
their hamiltonicity.

Some generating sets of cubic Pancake graphs were found recently in:

Elena V. Konstantinova, Son En Gun, The girths of the cubic Pancake
graphs, 2022, https://arxiv.org/abs/2201.05733.

Other useful references:
Konstantinova-Medvedev-2016: Independent even cycles in the Pancake graph and
greedy Prefix-reversal Gray codes, Graphs and Combinatorics.

Konstantinova-Medvedev-2014, Small cycles in the Pancake graph, AMC.
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Conjectures/open problems on Pancake networks

Bn is a group of signed permutations also known as hyperoctahedral group.

Sawada-Williams Conjecture 2, 2016

The burnt Pancake network Cay(Bn, {rbn , rbn−1, r
b
n−2}) is hamiltonian.

Nothing known about computational results in this case. In general case,
the cyclic structure of the burnt Pancake graphs was studied in:

S. A. Blanco, Ch. Buehrle, A. Patidar, Cycles in the burnt pancake graph,
Discrete Applied Mathematics, 271 (2019) 1-14.

Open Problem 2

To characterize all generating sets of cubic burnt Pancake networks and
check their hamiltonicity.
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Going to the next problems....
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Chromatic properties of Cayley graphs with hierarchical
structure

Hierarchical structure

A graph Γn has its induced subgraphs as Γn−1 which are vertex-disjoint.

Example

The hypercube graph Hn has two induced subraphs Hn−1.
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Chromatic number

A mapping c : V (Γ) → {1, 2, . . . , k} is a proper k–coloring of a graph
Γ = (V ,E ) if c(u) ̸= c(v) whenever the vertices u and v are adjacent.

Chromatic number

The chromatic number χ(Γ) of a graph Γ is the least number of colors
needed to color vertices of Γ.

A k–coloring is the same as a partition of V (Γ) into k independent sets.

Trivial facts

χ(Cay(Symn,T )) = 2 for any n ⩾ 2 whenever T is a generating set of
transpositions.

Trivial facts

χ(Hn) = 2 for any n ⩾ 2.
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Other chromatic characteristics of graphs

Chromatic index

The chromatic index χ′(Γ) is the least number of colors needed to color
edges of Γ such that no two adjacent edges share the same color.

By Vizing’s theorem, the number of colors needed to edge color a simple
graph is either its maximum degree ∆ (class 1) or ∆ + 1 (class 2).

Total chromatic number

The total chromatic number χ′′(Γ) of a graph Γ is the least number of
colors needed in any total coloring of Γ.

In the total coloring no adjacent vertices, edges, and no edge and its
endvertices are assigned the same color.

Remark

Edge colorings have applications in scheduling problems and in frequency
assignment for fiber optic networks.
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Chromatic properties of the Pancake graph [K17]

Total chromatic number

χ′′(Pn) = n for any n ⩾ 3.

Total n-coloring is based on efficient dominating sets in the graph.

Chromatic index: class 1

χ′(Pn) = n − 1 for any n ⩾ 3.

It is obtained from Vizing’s bound χ′ ⩾ ∆ taking into account the edge
coloring in which the color (i − 1) is assigned to ri , 2 ⩽ i ⩽ n.

Chromatic number: trivial bounds

3 ⩽ χ(Pn) ⩽ n − 1 for any n ⩾ 4.

[K17] E. V. Konstantinova, Chromatic properties of the Pancake graphs,
Discussiones Mathematicae Graph Theory, 37 (2017) 777–787.
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The Pancake graph: chromatic number

3 ⩽ χ(Pn) ⩽ n − 1 for any n ⩾ 4.

3-coloring of P4: hamiltonian drawing Picture: Tomo Pisanski
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3-coloring of P4: hierarchical drawing
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Picture: K. Rogalskaya
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3-coloring of one copy of P5: hierarchical drawing
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Picture: K. Rogalskaya
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3-coloring P5: hierarchical drawing
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New bound: joint work with Leen Droogendijk

In the table below the known chromatic numbers are presented:

n 3 4 5 6 7 8 9

|V (Pn)| 6 24 120 720 5040 40320 362880

χ(Pn) 2 3 3 4 4 4 4

New bound [DK-2021+]

χ(Pn) ⩽ 4
⌊
n
9

⌋
+ χ

(
Pn (mod 9)

)
with χ(P0) = 0, χ(P1) = 1, and χ(P2) = 2. For n = 3, . . . , 9, χ(Pn) can
be taken from the table above. The proof is a consequence of the property.

Subadditive property

χ(Pn+m) ⩽ χ(Pn) + χ(Pm) for all positive integers n and m.

With χ(P9) = 4 this immediately gives the new general upper bound.
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Chromatic number: open problems

Open problem 3

It is unknown if χ(Pn) ever exceeds 4 for n ⩾ 10.

If it turns out that χ(Pn) ⩽ 4 for all n, then efforts on finding upper
bounds are pointless.

One of the ways to ruling out the possibility χ(Pn) ⩽ 4 for all n would be

Open problem 4

To show that the Pancake graph Pn does not have an independent set of
size n!

4 if n is large enough.
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Equitable chromatic number

A graph is equitably k-colorable if it has a proper k-coloring such that the
sizes of any two color classes differ by at most one. The χ=(Γ) is the
smallest integer k such that Γ is equitably k-colorable.

Meyer conjecture, 1973

Every connected graph with maximum degree ∆ has an equitable coloring
with ∆ or fewer colors, with the exceptions of complete graphs, odd cycles.

Meyer conjecture is true for Pn, n ⩾ 3.

Droogendijk-Konstantinova conjecture, 2021

For any n ⩾ 3, χ(Pn) = χ=(Pn).

DK conjecture confirmed

for any n = 3, 4, 5, 6, 7, we have χ(Pn) = χ=(Pn).
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On a way to the next problem....
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Integral graphs: historical background, 1974

Integral graph

A graph Γ is integral if its spectrum consists entirely of integers, where the
spectrum of Γ is the spectrum of its adjacency matrix.

F. Harary and A. J. Schwenk, Which graphs have integral spectra?
Graphs and Combinatorics (1974).

The problem of characterizing integral graphs.

O. Ahmadi, N. Alon, I. F. Blake, and I. E. Shparlinski, Graphs with
integral spectrum, (2009)

Most graphs have nonintegral eigenvalues, more precisely, it was proved
that the probability of a labeled graph on n vertices to be integral is at
most 2−n/400 for a sufficiently large n.

Remark. Integral graphs play an important role in quantum networks since
a perfect state transfer is supported by such the graphs.
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Computational results on graphs: 1999-2004

K. Balińska, D. Cvetković, M. Lepović, S. Simić, D. Stevanović,
M. Kupczyk, K.T. Zwierzyński, G. Royle

- Brendan McKay’s program GENG for generating graphs
- Magma
- On-Line Encyclopedia of Integer Sequences, the sequence A064731
http://www.research.att.com/projects/OEIS?Anum=A064731

Connected intergal graphs with n ⩽ 12 vertices

n 2 3 4 5 6 7 8 9 10 11 12

total 2 23 26 210 215 2097152 228 236 245 250 266

# 1 1 2 3 6 7 22 24 83 236 325
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Integral graphs: simplest examples

Spectrum of the complete graph Kn

[(−1)n−1, (n − 1)1] for n ⩾ 2, and [01] for n = 1. Integral for any n ⩾ 1.

Spectrum of the complete bipartite graph Km,n

[0n+m−2,±(
√
nm)1] for n,m ⩾ 1. Integral when mn = c2.

Spectrum of n-cycle Cn

The spectrum consists of the numbers 2 cos(2πin ), i = 1, . . . , n with
multiplicities 2, 1, 1, . . . , 1, 2 for n even and 1, 1, . . . , 1, 2 for n odd.
There are only three integral cycles:
C3: [−12, 2] (C3

∼= K3)
C4: [−2, 02, 2] = [02,±2] (C4

∼= K2,2)
C6: [−2,−12, 12, 2] = [±12,±2]

Smallest non-integral cycle is C5: [2, (
−1+

√
5

5 )2, (−1−
√
5

5 )2]
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Integral Cayley graphs: 2005-present

Characterization of integral Cayley graphs

Hamming graphs H(n, q): λm = n(q − 1)− qm, where
m = 0, 1, ..., n, with multiplicities

(n
m

)
(q − 1)m

Cayley graphs over cyclic groups (circulants) (W. So, 2005)

3-regular Cayley graphs (A. Abdollahi, E. Vatandoost, 2009)

Cayley graphs over abelian groups (W. Klotz, T. Sander, 2010)

spectrum of the Star graph Sn (G. Chapuy, V. Feray, 2012)

4-regular Cayley graphs (M. Minchenko, I. M. Wanless, 2015)

Cayley graphs over dihedral groups (L. Lu, Q. and X. Huang, 2018)

The Star graph Sn = Cay(Symn, S), n ⩾ 2

is the Cayley graph over the symmetric group Symn with the generating
set S = {(1 i), 2 ⩽ i ⩽ n}.
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Integrality of the Star graphs Sn

Conjecture (A. Abdollahi and E. Vatandoost, 2009)

The spectrum of Sn is integral, and contains all integers in the range from
−(n− 1) up to n− 1 (with the sole exception that when n ⩽ 3, zero is not
an eigenvalue of Sn).

For n ⩽ 6, the conjecture was verified by GAP.

Theorem (G. Chapuy and V. Feray, 2012)

The spectrum of Sn contains only integers. The multiplicity mul(n − k),
where 1 ⩽ k ⩽ n − 1, of an integer (n − k) ∈ Z is given by:

mul(n − k) =
∑
λ⊢n

dim(Vλ)Iλ(n − k),

where dim(Vλ) is the dimension of an irreducible module, Iλ(n − k) is the
number of standard Young tableaux of shape λ, satisfying c(n) = n − k .
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Multiplicities of eigenvalues of the Star graphs

Corollary (G. Chapuy and V. Feray, 2012)

Let n ⩾ 2, then for each integer 1 ⩽ k ⩽ n − 1 the values ±(n − k) are

eigenvalues of Sn with multiplicity at least
(
n−2
k−1

)(
n−1
k

)
. The bound is

achieved for k = 2.

Theorem (S. Avgustinovich, E. Khomyakova, E. K., 2016)

The multiplicities mul(n − k), where k = 2, 3, 4, 5 and n ⩾ 2k − 1, of the
eigenvalues (n − k) of the Star graph Sn are given by the following
formulas:
mul(n − 2) = (n − 1)(n − 2)

mul(n − 3) = (n−3)(n−1)
2 (n2 − 4n + 2)

mul(n − 4) = (n−2)(n−1)
6 (n4 − 12n3 + 47n2 − 62n + 12)

mul(n− 5) = (n−2)(n−1)
24 (n6− 21n5+169n4− 647n3+1174n2− 820n+60)
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Multiplicities of eigenvalues of the Star graphs

Theorem (E. Khomyakova, 2018)

Let n, t ∈ Z, n ⩾ 2 and 1 ⩽ t ⩽ n+1
2 , then the multiplicity mul(n − t) of

the eigenvalue (n − t) of the Star graph Sn is given by the following
formula:

mul(n − t) =
n2(t−1)

(t − 1)!
+ P(n),

where P(n) is a polynomial of degree 2t − 3.

Catalogue of the Star graph eigenvalue multiplicities
(E. Khomyakova, E. Konstantinova, 2019)

Multiplicities mul(n − k) of eigenvalues (n − k) of the Star graphs Sn for
n ⩽ 50 and 1 ⩽ k ⩽ n are presented in the catalogue. Negative eigenvalues
−(n − k) have the same multiplicities as the corresponding positive ones.
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Transposition graph and its properties

Definition

The Transposition graph Tn is defined as a Cayley graph over the
symmetric group Symn generated by all transpositions
T = {(i j) ∈ Symn, 1 ⩽ i < j ⩽ n}.

Properties:

Connected

Bipartite(n
2

)
-regular

Order is n!

Integral
(Lytkina-K,
Algebra
Colloquium
(2020))
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K. Kalpakis, Y. Yesha, On the bisection Width of the
Transposition network, Networks, 29 (1997) 69–76.

Result 1

The Transposition graph Tn, n ⩾ 2, is an integral graph such that its
largest eigenvalue is n(n−1)

2 with multiplicity 1; its second largest eigenvalue

is n(n−3)
2 with multiplicity (n − 1)2; and for each k , 1 ⩽ k ⩽ n, the value

n(n−2k+1)
2 is an eigenvalue of Tn with multiplicity at least n!

n(n−k)!(k−i)! .

Remark. Result 1 does not give a complete description of the Tn spectrum.

Result 2

Let i = (n1, . . . , nk) ⊢ n is a partition of n. Then

λi =
k∑

j=1

nj(nj − 2j + 1)

2
∈ Spec(Tn).
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E. Konstantinova, A. Kravchuk, Spectrum of the
Transposition graph, Linear Algebra and its Applications,
654 (2022) 379-389.

First eigenvalues of Tn

For any integer k ⩾ 0, there exists n0 such that for any n ⩾ n0 and any
m ∈ {0, . . . , k}, m ∈ Spec(Tn).
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The Transposition graph: Eigenvalues around zero

The eigenvalue zero and one [KK-2022]

In the spectrum of Tn there is the eigenvalue zero for any n ̸= 2 and the
eigenvalue one for any odd n ⩾ 7 and any even n ⩾ 14.

Open questions

What are the multiplicities of the eigenvalues zero and one?
What one can say about their asymptotic behavior?

Computational results for the eigenvalue zero:

n 1 3 4 5 6 7 8 9 10 11

mul(0) 1 4 4 36 256 400 9864 6664 790528 1474848

Further studying: Zero eigenvalues of Tn

Joint project with Saúl A. Blanco, IU, and Charles Buehrle, NDMU.
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The third and the fourth largest eigenvalues of Tn

Theorem [KK-2022]

The third largest eigenvalue of Tn, n ⩾ 4, is (n−1)(n−4)
2 , and the fourth

largest eigenvalue of Tn, n > 6, is n(n−5)
2 .

Open questions

What are multiplicities of small largest eigenvalues? What are expressions
for eigenvalues lying between the smallest and largest eigenvalues.
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The Transposition graph: spectrum in general

Let Spec(Γ) = [λ
mul(λ1)
1 , . . . , λ

mul(λk )
k ] be a spectrum of a graph Γ with

non-negative eigenvalues λ1 < λ2 < . . . < λk and their multiplicities.

Open problem 5

To describe explicitly the spectrum of Tn.

Some known spectra

Spec(T3) = [04, 31]
Spec(T4) = [04, 29, 61]
Spec(T5) = [036, 225, 516, 101]
Spec(T6) = [0256, 3125, 581, 925, 151]
Spec(T7) = [0400, 1441, 31225, 6196, 7225, 9196, 1436, 211]
Spec(T8) = [09864, 23136, 46125, 74096, 8196, 10784, 12441, 14400, 2049, 281]
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Thanks for your attention!
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