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Panake problem: 1975, American Mathematical Monthlyby Jacob E . Goodman (under the name "Harried Waiter")"The hef in our plae is sloppy, and when he prepares a stak ofpanakes they ome out all di�erent sizes. Therefore, when Ideliver them to a ustomer, on the way to the table I rearrangethem (so that the smallest winds up on top, and so on, down tothe largest on the bottom) by grabbing several panakes from thetop and �ips them over, repeating this (varying the number I �ip)as many times as neessary. If there are n panakes, what is themaximum number of �ips (as a funtion of n) that I will everhave to use to rearrange them?"
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The Panake problem and the Panake graphA stak of n panakes is represented by a permutation on n elements andthe problem is to �nd the least number of �ips (pre�x�reversals) needed totransform a permutation into the identity permutation.Thr Panake graph: de�nitionThe Panake graph
Pn = (Symn,PR)is a Cayley graph on the symmetri group Symn with generating set

PR = {ri ∈ Symn, 1 6 i < n}, |PR | = (n − 1),where ri is the operation of reversing the order of any substring
[1, i ], 1 < i 6 n, of a permutation π when multiplied on the right, i.e.,

[π1, . . . , πi , πi+1, . . . , πn]ri = [πi , . . . , π1, πi+1, . . . , πn].Elena Konstantinova, Alexei Medvedev () Small yles in the Panake graph Bled-2011, June 2011 3 / 12



The Panake problem: still it is open!This number of �ips orresponds to the diameter D of the Panake graph.Exat values of D are known for n 6 194 5 6 7 8 9 10 11 12 13 14 15 16 17 18 194 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22Asai S., Shinano Y., Kaneko K., LNCS 4128 (2006) 1114�1124.J. Cibulka, Theoretial Computer Siene 412 (2011) 822�834.Panake problem: bounds1979, Gates,Papadimitriou: 17n/16 6 D 6 (5n + 5)/31997, Heydari ,Sudborough: 15n/14 6 D2007, Sudborough, etc .: D 6 18n/11Elena Konstantinova, Alexei Medvedev () Small yles in the Panake graph Bled-2011, June 2011 4 / 12



The main properties of the Panake graphPropertiesa onneted (n − 1)�regular graph of order n!;a vertex�transitive;a hamiltonian (1984, Zaks);almost panyli graph;Hierarhial struture
Pn is onstruted from n opies of P i

n−1 = (V i ,E i ), 1 6 i 6 n, s.t.:
V i = {[π1 . . . πn−1 i ]}, |V i | = (n − 1)!, |V (Pn)| = (n − 1)!n;
E i = {{[π1 . . . πn−1 i ], [π1 . . . πn−1 i ] rj}, 2 6 j 6 n − 1},
|E i | = (n−1)!(n−2)

2 ;
|E (Pn)| = |Ein|

⋃
|Eex |, Ein =

⋃
E i è |Eex | =

n!
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Example: P1, P2, P3, P4
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Cyle struture of the Panake graphS. Zaks, 1984
Pn, n > 3, is hamiltonian, i.e. there is a yle of length n!A. Kanevsky, C. Feng, 1995All yles of length l where 6 6 l 6 n!− 2, or l = n! an embedded in PnJ. J. Sheu, J. J. M. Tan, K. T. Chu, 2006All yles of length l where 6 6 l 6 n! an embedded in PnHowever: Expliit desription of yles was not given!Elena Konstantinova, Alexei Medvedev () Small yles in the Panake graph Bled-2011, June 2011 7 / 12



Expliit representation of 6- and 7�yles in PnE. K., A. Medvedev, 20101. Pn, n > 3, has n!
6 independent yles of length 6 desribed by

C6 = r3 r2 r3 r2 r3 r2,i.e., eah of verties of Pn, n > 4, belongs to the only yles of length 6.2. Pn, n > 4, has n! (n − 3) di�erent yles of length 7 desribed by
C7 = rk rk−1 rk rk−1 rk−2 rk r2, 4 6 k 6 n,eah of verties of Pn, n > 4, belongs to 7 (n − 3) yles of length 7.3. Pn, n > 4, has N7 independent yles of length 7 where

n!

8
6 N7 6

n!

7
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Expliit representation of 8-yles in PnE. K., A. Medvedev, 2011Eah of verties of Pn, n > 4, belongs to N di�erent 8�yles of thefollowing 8 anonial forms:
rk rj ri rj rk rk−j+i ri rk−j+i , 2 6 i < j 6 k − 1, 4 6 k 6 n;
rk rk−1 r2 rk−1 rk r2 r3 r2, 4 6 k 6 n;
rk rk−i rk−1 ri rk rk−i rk−1 ri , 2 6 i 6 k − 2, 4 6 k 6 n;
rk rk−i+1 rk ri rk rk−i rk−1 ri−1, 3 6 i 6 k − 2, 5 6 k 6 n;
rk rk−1 ri−1 rk rk−i+1 rk−i rk ri , 3 6 i 6 k − 2, 5 6 k 6 n;
rk rk−1 rk rk−i rk−i−1 rk ri ri+1, 2 6 i 6 k − 3, 5 6 k 6 n;
rk rk−j+1 rk ri rk rk−j+1 rk ri , 2 6 i < j 6 k − 1, 4 6 k 6 n;
r4 r3 r4 r3 r4 r3 r4 r3,where N =

n3 + 12n2 − 103n + 176

2
.The total number of 8�yles in the Panake graph is n!N
8 .Elena Konstantinova, Alexei Medvedev () Small yles in the Panake graph Bled-2011, June 2011 9 / 12



Cyle struture: paking by independent 8�yles
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Cyle struture: paking by independent ylesKnown fatsThe Panake graph Pn, n > 3, has:
n!
6 independent 6�yles;
n!
8 independent 8�yles;
n!
8 6 N7 6

n!
7 independent 7�yles.Open questionAre there n!

7 independent 7�yles in Pn, n > 7?Open questionAre there n!
l
independent l�yles in Pn for some n > 3?Elena Konstantinova, Alexei Medvedev () Small yles in the Panake graph Bled-2011, June 2011 11 / 12



Algebrai representation of yles in the Panake graphThe total number of 9�yles in the Panake graph is O(n3n!)Open questionWhat is the way to desribe all l�yles in the Panake graph?Known fatsEah of verties of Pn, n > 4, belongs to the following odd yles
C 1
2s+3 = (rk rk−1)

s rk−s rk rs , 2 ≤ s ≤ k − 2, 4 ≤ k ≤ n;
C 2
2s+5 = rk (rk−1 rk−2)

s rk rs+1 rk rk−s , 1 ≤ s ≤ k − 2, 4 ≤ k ≤ n,where (ri1 . . . rij )
s orresponds to s ≥ 1 sequenes of ri1 . . . rij , j ≥ 2.Elena Konstantinova, Alexei Medvedev () Small yles in the Panake graph Bled-2011, June 2011 12 / 12


