Prefix-reversal Gray codes

Elena Konstantinova

Sobolev Institute of Mathematics

joint work with Alexey Medvedev, CEU Budapest

Modern Trends in Algebraic Graph Theory Villanova University, USA, June 2–5, 2014

Binary reflected Gray code (BRGC)

Gray code [F. Gray, 1953, U.S. Patent 2,632,058]

The reflected binary code, also known as Gray code, is a binary numeral system where two successive values differ in only one bit.

Example		
<i>n</i> = 2:	00 01 11 10	
<i>n</i> = 3:	000 001 011 010 110 111 101 100	

BRGC is related to Hamiltonian cycles of hypercube graphs

Gray codes: generating combinatorial objects

Gray codes

Now the term Gray code refers to minimal change order of combinatorial objects.

[D.E. Knuth, The Art of Computer Programming, Vol.4 (2010)]

Knuth recently surveyed combinatorial generation:

Gray codes are related to

efficient algorithms for exhaustively generating combinatorial objects.

(tuples, permutations, combinations, partitions, trees)

[P. Eades, B. McKay, An algorithm of generating subsets of fixed size with a strong minimal change property (1984)]

They followed to Gray's approach to order

the k-combinations of an n element set.

Gray codes: generating permutations

[V.L. Kompel'makher, V.A. Liskovets, Successive generation of permutations by means of a transposition basis (1975)]

Q: Is it possible to arrange permutations of a given length so that each permutation is obtained from the previous one by a transposition?

A: YES

[S. Zaks, A new algorithm for generation of permutations (1984)]

In Zaks' algorithm each successive permutation is generated by reversing a suffix of the preceding permutation.

Start with $I_n = [12 \dots n]$ and in each step reverse a certain suffix. Let

 ζ_n is the sequence of sizes of these suffixes defined by recursively as follows: $\zeta_2 = 2$ $\zeta_n = (\zeta_{n-1} n)^{n-1} \zeta_{n-1}, n > 2,$

where a sequence is written as a concatenation of its elements.

Zaks' algorithm: examples

If n = 2 then $\zeta_2 = 2$ and we have:

[<u>12</u>] [21]

If n = 3 then $\zeta_3 = 23232$ and we have:

 $\begin{bmatrix} 1\underline{23} \\ 1\underline{32} \end{bmatrix} \begin{bmatrix} 2\underline{31} \\ 2\underline{13} \end{bmatrix} \begin{bmatrix} 3\underline{12} \\ 3\underline{21} \end{bmatrix}$

If n = 4 then $\zeta_4 = 23232423232423232423232$ and we have:

Greedy Pancake Gray codes: generating permutations

[A. Williams, J. Sawada, Greedy pancake flipping (2013)]

Take a stack of pancakes, numbered 1, 2, ..., n by increasing diameter, and repeat the following:

Flip the maximum number of topmost pancakes that gives a new stack.

Prefix-reversal Gray codes: generating permutations

Each 'flip' is formally known as prefix-reversal.

The Pancake graph P_n

is the Cayley graph on the symmetric group Sym_n with generating set $\{r_i \in Sym_n, 1 \leq i < n\}$, where r_i is the operation of reversing the order of any substring [1, i], $1 < i \leq n$, of a permutation π when multiplied on the right, i.e., $[\pi_1 \dots \pi_i \pi_{i+1} \dots \pi_n]r_i = [\pi_i \dots \pi_1 \pi_{i+1} \dots \pi_n]$.

Williams' prefix-reversal Gray code: $(r_n r_{n-1})^n$

Flip the maximum number of topmost pancakes that gives a new stack.

Zaks' prefix–reversal Gray code: $(r_3 r_2)^3$

Flip the minimum number of topmost pancakes that gives a new stack.

Elena Konstantinova

• □ > • □ > • □ > • □ > •

Two scenarios of generating permutations: Zaks | Williams

(b) Williams' code in P_4

[A. Kanevsky, C. Feng, On the embedding of cycles in pancake graphs (1995)]

All cycles of length $\ell,$ where $6\leqslant\ell\leqslant n!-2,$ or $\ell=n!,$ can embedded in $P_n.$

[J.J. Sheu, J.J.M. Tan, K.T. Chu, Cycle embedding in pancake interconnection networks (2006)]

All cycles of length ℓ , where $6 \leq \ell \leq n!$, can embedded in P_n .

Cycles in P_n

All cycles of length ℓ , where $6 \leq \ell \leq n!$, can be embedded in the Pancake graph P_n , $n \geq 3$, but there are no cycles of length 3, 4 or 5.

Proofs are based on the hierarchical structure of P_n .

Pancake graphs: hierarchical structure

 P_n consists of *n* copies of $P_{n-1}(i) = (V^i, E^i)$, $1 \le i \le n$, where the vertex set V^i is presented by permutations with the fixed last element.

Hamiltonicity due to the hierarchical structure of $P_n \Leftrightarrow$ Prefix-reversal Gray codes (PRGC) by Zaks and Williams

Proposition 1.

If there is a Gray code in P_{n-1} then there is a Gray code in P_n given by the same algorithm.

Elena Konstantinova

Prefix-reversal Gray codes

Villanova-2014 11 / 18

Small independent even cycles and PRGC

Proposition 2.

The Pancake graph P_n , $n \ge 3$, contains the maximal set of $\frac{n!}{\ell}$ independent ℓ -cycles of the canonical form

$$C_{\ell}=(r_kr_{k-1})^k,$$

where $\ell = 2 k$, for any $3 \leq k \leq n$.

Williams' prefix-reversal Gray code: $(r_n r_{n-1})^n$

This code is based on the maximal set of independent 2n-cycles.

Zaks' prefix–reversal Gray code: $(r_3 r_2)^3$

This code is based on the maximal set of independent 6-cycles.

Elena Konstantinova

Prefix-reversal Gray codes

Independent cycles in P_n

Theorem 1.

The Pancake graph P_n , $n \ge 4$, contains the maximal set of $\frac{n!}{\ell}$ independent ℓ -cycles of the canonical form

$$C_{\ell} = (r_n r_m)^k, \tag{1}$$

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

where $\ell = 2 k$, $2 \leqslant m \leqslant n - 1$ and

$$k = \begin{cases} O(1) & \text{if } m \leq \lfloor \frac{n}{2} \rfloor;\\ O(n) & \text{if } m > \lfloor \frac{n}{2} \rfloor \text{ and } n \equiv 0 \pmod{n-m};\\ O(n^2) & \text{else.} \end{cases}$$
(2)

Corollary

The cycles presented in Theorem 1 have no chords.

Elena Konstantinova

Hamilton cycle \Rightarrow PRGC

Definition

The Hamilton cycle H_n based on independent ℓ -cycles is called a Hamilton cycle in P_n , consisting of paths of lengths $l = \ell - 1$ of independent cycles, connected together with external to these cycles edges.

Definition

The complementary cycle H'_n to the Hamilton cycle H_n based on independent cycles is defined on unused edges of H_n and the same external edges.

(d) Complement cycle H'_4 to H_4 in P_4

Theorem 2.

There are no other Hamilton cycles in P_n , $n \ge 5$, based on independent cycles from Theorem 1 when k = O(1) and k = O(n), except from Zaks and Williams constructions.

Proof is based on examining the complementary cycles' structures.

Theorem 3.

There are no Hamilton cycles in P_n , $n \ge 4$, based on independent $\frac{n!}{2}$ -cycles but there are Hamilton paths based on the following two independent cycles:

$$C_n^1 = ((C_{n-1}^1/r_{n-1})r_n)^n,$$

$$C_n^2 = ((C_{n-1}^2/r_{n-1})r_n)^n,$$
where $C_4^1 = (r_3 r_2 r_4 r_2 r_3 r_4)^2$ and $C_4^2 = (r_2 r_3 r_4 r_3 r_2 r_4)^2.$

Proof is based on the hierarchical structure of P_n and on the nonexistence 4-cycles in P_n .

Thanks for attention!