Prefix-reversal Gray codes

Elena Konstantinova

Sobolev Institute of Mathematics
joint work with Alexey Medvedev, CEU Budapest

Modern Trends in Algebraic Graph Theory
Villanova University, USA, June 2-5, 2014

Binary reflected Gray code (BRGC)

Gray code [F. Gray, 1953, U.S. Patent 2,632,058]

The reflected binary code, also known as Gray code, is a binary numeral system where two successive values differ in only one bit.

Example

$$
\begin{aligned}
& n=2: \\
& n=3:
\end{aligned}
$$

$0001 \mid 1110$
$000001011010 \mid 110111101100$

BRGC is related to Hamiltonian cycles of hypercube graphs

Gray codes: generating combinatorial objects

Gray codes

Now the term Gray code refers to
minimal change order of combinatorial objects.
[D.E. Knuth, The Art of Computer Programming, Vol. 4 (2010)]
Knuth recently surveyed combinatorial generation:
Gray codes are related to efficient algorithms for exhaustively generating combinatorial objects.
(tuples, permutations, combinations, partitions, trees)
[P. Eades, B. McKay, An algorithm of generating subsets of fixed size with a strong minimal change property (1984)]

They followed to Gray's approach to order the k-combinations of an n element set.

Gray codes: generating permutations

[V.L. Kompel'makher, V.A. Liskovets, Successive generation of permutations by means of a transposition basis (1975)]

Q: Is it possible to arrange permutations of a given length so that each permutation is obtained from the previous one by a transposition?

A: YES
[S. Zaks, A new algorithm for generation of permutations (1984)]
In Zaks' algorithm each successive permutation is generated by reversing a suffix of the preceding permutation.
Start with $I_{n}=[12 \ldots n]$ and in each step reverse a certain suffix. Let
ζ_{n} is the sequence of sizes of these suffixes defined by recursively as follows:

$$
\begin{aligned}
& \zeta_{2}=2 \\
& \zeta_{n}=\left(\zeta_{n-1} n\right)^{n-1} \zeta_{n-1}, n>2
\end{aligned}
$$

where a sequence is written as a concatenation of its elements.

Zaks' algorithm: examples

If $n=2$ then $\zeta_{2}=2$ and we have:
[12] [21]

If $n=3$ then $\zeta_{3}=23232$ and we have:

$$
\begin{array}{lll}
{[123]} & {[231]} & {[312]} \\
{[\underline{132]}]} & {[\underline{213}]} & {[321]}
\end{array}
$$

If $n=4$ then $\zeta_{4}=23232423232423232423232$ and we have:
[1234] [2341] [3412] [4123]
[1243] [2314] [3421] [4132]
[1342] [2413] [3124] [4231]
[1324] [2431] [3142] [4213]
[1423] [2134] [3241] [4312]
[1432] [2143] [3214] [4321]

Greedy Pancake Gray codes: generating permutations

[A. Williams, J. Sawada, Greedy pancake flipping (2013)]

Take a stack of pancakes, numbered $1,2, \ldots, n$ by increasing diameter, and repeat the following:
Flip the maximum number of topmost pancakes that gives a new stack.

Prefix-reversal Gray codes: generating permutations

Each 'flip' is formally known as prefix-reversal.

The Pancake graph P_{n}

is the Cayley graph on the symmetric group Sym n with generating set $\left\{r_{i} \in \operatorname{Sym}_{n}, 1 \leqslant i<n\right\}$, where r_{i} is the operation of reversing the order of any substring $[1, i], 1<i \leqslant n$, of a permutation π when multiplied on the right, i.e., $\left[\pi_{1} \ldots \pi_{i} \pi_{i+1} \ldots \pi_{n}\right] r_{i}=\left[\pi_{i} \ldots \pi_{1} \pi_{i+1} \ldots \pi_{n}\right]$.

Williams' prefix-reversal Gray code: $\left(r_{n} r_{n-1}\right)^{n}$

Flip the maximum number of topmost pancakes that gives a new stack.

Zaks' prefix-reversal Gray code: $\left(r_{3} r_{2}\right)^{3}$
Flip the minimum number of topmost pancakes that gives a new stack.

Two scenarios of generating permutations: Zaks | Williams

(a) Zaks' code in P_{4}

(b) Williams' code in P_{4}

Resume:

\square

Pancake graph: cycle structure

[A. Kanevsky, C. Feng, On the embedding of cycles in pancake graphs (1995)]

All cycles of length ℓ, where $6 \leqslant \ell \leqslant n!-2$, or $\ell=n!$, can embedded in P_{n}.
[J.J. Sheu, J.J.M. Tan, K.T. Chu, Cycle embedding in pancake interconnection networks (2006)]
All cycles of length ℓ, where $6 \leqslant \ell \leqslant n!$, can embedded in P_{n}.

Cycles in P_{n}

All cycles of length ℓ, where $6 \leqslant \ell \leqslant n!$, can be embedded in the Pancake graph $P_{n}, n \geqslant 3$, but there are no cycles of length 3,4 or 5 .

Proofs are based on the hierarchical structure of P_{n}.

Pancake graphs: hierarchical structure

P_{n} consists of n copies of $P_{n-1}(i)=\left(V^{i}, E^{i}\right), 1 \leqslant i \leqslant n$, where the vertex set V^{i} is presented by permutations with the fixed last element.

Hamiltonicity due to the hierarchical structure of $P_{n} \Leftrightarrow$ Prefix-reversal Gray codes (PRGC) by Zaks and Williams

Proposition 1.

If there is a Gray code in P_{n-1} then
there is a Gray code in P_{n} given by the same algorithm.

Small independent even cycles and PRGC

Proposition 2.

The Pancake graph $P_{n}, n \geqslant 3$, contains the maximal set of $\frac{n!}{\ell}$ independent ℓ-cycles of the canonical form

$$
C_{\ell}=\left(r_{k} r_{k-1}\right)^{k}
$$

where $\ell=2 k$, for any $3 \leqslant k \leqslant n$.

Williams' prefix-reversal Gray code: $\left(r_{n} r_{n-1}\right)^{n}$
This code is based on the maximal set of independent $2 n$-cycles.

Zaks' prefix-reversal Gray code: $\left(r_{3} r_{2}\right)^{3}$
This code is based on the maximal set of independent 6-cycles.

Independent cycles in P_{n}

Theorem 1.

The Pancake graph $P_{n}, n \geqslant 4$, contains the maximal set of $\frac{n!}{\ell}$ independent ℓ-cycles of the canonical form

$$
\begin{equation*}
C_{\ell}=\left(r_{n} r_{m}\right)^{k} \tag{1}
\end{equation*}
$$

where $\ell=2 k, 2 \leqslant m \leqslant n-1$ and

$$
k= \begin{cases}O(1) & \text { if } m \leqslant\left\lfloor\frac{n}{2}\right\rfloor ; \tag{2}\\ O(n) & \text { if } m>\left\lfloor\frac{n}{2}\right\rfloor \text { and } n \equiv 0 \quad(\bmod n-m) \\ O\left(n^{2}\right) & \text { else. }\end{cases}
$$

Corollary

The cycles presented in Theorem 1 have no chords.

Hamilton cycles based on small independent even cycles

Hamilton cycle \Rightarrow PRGC

Definition

The Hamilton cycle H_{n} based on independent ℓ-cycles is called a Hamilton cycle in P_{n}, consisting of paths of lengths $I=\ell-1$ of independent cycles, connected together with external to these cycles edges.

Hamilton cycles based on small independent even cycles

Definition

The complementary cycle H_{n}^{\prime} to the Hamilton cycle H_{n} based on independent cycles is defined on unused edges of H_{n} and the same external edges.

(c) Hamilton cycle H_{4} in P_{4}

(d) Complement cycle H_{4}^{\prime} to H_{4} in P_{4}

Hamilton cycles based on small independent even cycles

Theorem 2.

There are no other Hamilton cycles in $P_{n}, n \geqslant 5$, based on independent cycles from Theorem 1 when $k=O(1)$ and $k=O(n)$, except from Zaks and Williams constructions.

Proof is based on examining the complementary cycles' structures.

Hamilton cycles based on independent $\frac{n!}{2}$-cycles

Theorem 3.

There are no Hamilton cycles in $P_{n}, n \geqslant 4$, based on independent $\frac{n!}{2}$-cycles but there are Hamilton paths based on the following two independent cycles:

$$
\begin{aligned}
& C_{n}^{1}=\left(\left(C_{n-1}^{1} / r_{n-1}\right) r_{n}\right)^{n}, \\
& C_{n}^{2}=\left(\left(C_{n-1}^{2} / r_{n-1}\right) r_{n}\right)^{n}
\end{aligned}
$$

where $C_{4}^{1}=\left(r_{3} r_{2} r_{4} r_{2} r_{3} r_{4}\right)^{2}$ and $C_{4}^{2}=\left(r_{2} r_{3} r_{4} r_{3} r_{2} r_{4}\right)^{2}$.

Proof is based on the hierarchical structure of P_{n} and on the nonexistence 4-cycles in P_{n}.

Thanks for attention!

