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Binary reflected Gray code (BRGC)

Gray code [F. Gray, 1953, U.S. Patent 2,632,058]

The reflected binary code, also known as Gray code, is a binary numeral
system where two successive values differ in only one bit.

Example

n = 2: 00 01 | 11 10

n = 3: 000 001 011 010 | 110 111 101 100

BRGC is related to Hamiltonian cycles of hypercube graphs
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Gray codes: generating combinatorial objects

Gray codes

Now the term Gray code refers to
minimal change order of combinatorial objects.

[D.E. Knuth, The Art of Computer Programming, Vol.4 (2010)]

Knuth recently surveyed combinatorial generation:

Gray codes are related to
efficient algorithms for exhaustively generating combinatorial objects.

(tuples, permutations, combinations, partitions, trees)

[P. Eades, B. McKay, An algorithm of generating subsets of fixed size
with a strong minimal change property (1984)]

They followed to Gray‘s approach to order
the k–combinations of an n element set.
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Gray codes: generating permutations

[V.L. Kompel’makher, V.A. Liskovets, Successive generation of
permutations by means of a transposition basis (1975)]

Q: Is it possible to arrange permutations of a given length so that each
permutation is obtained from the previous one by a transposition?

A: YES

[S. Zaks, A new algorithm for generation of permutations (1984)]

In Zaks’ algorithm each successive permutation is generated
by reversing a suffix of the preceding permutation.

Start with In = [12 . . . n] and in each step reverse a certain suffix. Let

ζn is the sequence of sizes of these suffixes defined by recursively as follows:
ζ2 = 2
ζn = (ζn−1 n)

n−1 ζn−1, n > 2,

where a sequence is written as a concatenation of its elements.
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Zaks’ algorithm: examples

If n = 2 then ζ2 = 2 and we have:

[12] [21]

If n = 3 then ζ3 = 23232 and we have:

[123] [231] [312]

[132] [213] [321]

If n = 4 then ζ4 = 23232423232423232423232 and we have:

[1234] [2341] [3412] [4123]

[1243] [2314] [3421] [4132]

[1342] [2413] [3124] [4231]

[1324] [2431] [3142] [4213]

[1423] [2134] [3241] [4312]

[1432] [2143] [3214] [4321]

Elena Konstantinova Prefix-reversal Gray codes Villanova–2014 5 / 18



Greedy Pancake Gray codes: generating permutations

[A. Williams, J. Sawada, Greedy pancake flipping (2013)]

Take a stack of pancakes, numbered 1, 2, ..., n by increasing diameter, and
repeat the following:

Flip the maximum number of topmost pancakes that gives a new stack.

[1234] [4321] [2341] [1432] [3412] [2143] [4123] [3214]

[2314] [4132] [3142] [2413] [1423] [3241] [4231] [1324]

[3124] [4213] [1243] [3421] [2431] [1342] [4312] [2134]
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Prefix–reversal Gray codes: generating permutations

Each ’flip’ is formally known as prefix–reversal.

The Pancake graph Pn

is the Cayley graph on the symmetric group Symn with generating set
{ri ∈ Symn, 1 6 i < n}, where ri is the operation of reversing the order of
any substring [1, i ], 1 < i 6 n, of a permutation π when multiplied on the
right, i.e., [π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn].

Williams’ prefix–reversal Gray code: (rn rn−1)
n

Flip the maximum number of topmost pancakes that gives a new stack.

Zaks’ prefix–reversal Gray code: (r3 r2)
3

Flip the minimum number of topmost pancakes that gives a new stack.
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Two scenarios of generating permutations: Zaks | Williams
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(a) Zaks’ code in P4
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(b) Williams’ code in P4

Resume: both approaches are based on independent cycles in Pn
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Pancake graph: cycle structure

[A. Kanevsky, C. Feng, On the embedding of cycles in pancake graphs
(1995)]

All cycles of length ℓ, where 6 6 ℓ 6 n!− 2, or ℓ = n!, can embedded in
Pn.

[J.J. Sheu, J.J.M. Tan, K.T. Chu, Cycle embedding in pancake
interconnection networks (2006)]

All cycles of length ℓ, where 6 6 ℓ 6 n!, can embedded in Pn.

Cycles in Pn

All cycles of length ℓ, where 6 6 ℓ 6 n!, can be embedded in the Pancake
graph Pn, n > 3, but there are no cycles of length 3, 4 or 5.

Proofs are based on the hierarchical structure of Pn.
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Pancake graphs: hierarchical structure

Pn consists of n copies of Pn−1(i) = (V i ,E i ), 1 6 i 6 n, where the vertex
set V i is presented by permutations with the fixed last element.
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Hamiltonicity due to the hierarchical structure of Pn ⇔

Prefix–reversal Gray codes (PRGC) by Zaks and Williams
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Proposition 1.

If there is a Gray code in Pn−1 then
there is a Gray code in Pn given by the same algorithm.
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Small independent even cycles and PRGC

Proposition 2.

The Pancake graph Pn, n > 3, contains the maximal set of n!

ℓ
independent

ℓ–cycles of the canonical form

Cℓ = (rk rk−1)
k ,

where ℓ = 2 k, for any 3 6 k 6 n.

Williams’ prefix–reversal Gray code: (rn rn−1)
n

This code is based on the maximal set of independent 2n–cycles.

Zaks’ prefix–reversal Gray code: (r3 r2)
3

This code is based on the maximal set of independent 6–cycles.
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Independent cycles in Pn

Theorem 1.

The Pancake graph Pn, n > 4, contains the maximal set of n!

ℓ
independent

ℓ–cycles of the canonical form

Cℓ = (rn rm)
k , (1)

where ℓ = 2 k, 2 6 m 6 n − 1 and

k =







O(1) if m 6 ⌊n
2
⌋;

O(n) if m > ⌊n
2
⌋ and n ≡ 0 (mod n −m);

O(n2) else.
(2)

Corollary

The cycles presented in Theorem 1 have no chords.
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Hamilton cycles based on small independent even cycles

Hamilton cycle ⇒ PRGC

Definition

The Hamilton cycle Hn based on independent ℓ–cycles is called a Hamilton
cycle in Pn, consisting of paths of lengths l = ℓ− 1 of independent cycles,
connected together with external to these cycles edges.
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Hamilton cycles based on small independent even cycles

Definition

The complementary cycle H ′

n to the Hamilton cycle Hn based on
independent cycles is defined on unused edges of Hn and the same external
edges.

 !

 !

 !

 !

 !

 !  !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

H4

(c) Hamilton cycle H4 in P4

 !

 !

 !

 !

 !

 !  !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

H
′

4

(d) Complement cycle H ′

4 to H4 in P4
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Hamilton cycles based on small independent even cycles

Theorem 2.

There are no other Hamilton cycles in Pn, n > 5, based on independent
cycles from Theorem 1 when k = O(1) and k = O(n), except from Zaks
and Williams constructions.

Proof is based on examining the complementary cycles’ structures.
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Hamilton cycles based on independent n!
2 –cycles

Theorem 3.

There are no Hamilton cycles in Pn, n > 4, based on independent
n!

2
–cycles but there are Hamilton paths based on the following two

independent cycles:

C 1
n = ((C 1

n−1/rn−1)rn)
n,

C 2
n = ((C 2

n−1/rn−1)rn)
n,

where C 1
4 = (r3 r2 r4 r2 r3 r4)

2 and C 2
4 = (r2 r3 r4 r3 r2 r4)

2.

Proof is based on the hierarchical structure of Pn and
on the nonexistence 4–cycles in Pn.
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Thanks for attention!
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